Protection of Photoreceptors in a Mouse Model of RP10

  • Lawrence C.S. Tam
  • Anna-Sophia Kiang
  • Naomi Chadderton
  • Paul F. Kenna
  • Matthew Campbell
  • Marian M. Humphries
  • G. Jane Farrar
  • Pete Humphries
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)

Abstract

Recombinant adeno-associated viral (rAAV) vectors have recently been widely used for the delivery of therapeutic transgenes in preclinical and clinical studies for inherited retinal degenerative diseases. Interchanging capsid genes between different AAV serotypes has enabled selective delivery of transgene into specific cell type(s) of the retina. The RP10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by missense mutations within the gene encoding inosine 5ʹ-monophosphate dehydrogenase type 1. Here, we report that the use of rAAV2/5 vectors expressing shRNA targeting mutant IMPDH1 prevents photoreceptor degeneration, and preserves synaptic connectivity in a mouse model of RP10.

Keywords

Toxicity Retina Retinitis 

Notes

Acknowledgments

This work was supported by grants from Science Foundation Ireland (G20026); The Health Research Board of Ireland (PRO262001); European Union-RETNET (MRTN-CT-2003-504003); European Union-EviGenoRET (LSHG-CT-2005-512036); The British RP Society and Fighting Blindness Ireland. The authors thank Dr. Sara Bowne (University of Texas, Houston) for providing the IMPDH1 antibody, and Dr. Arpad Palfi (Trinity College Dublin, Ireland) for providing the EGFP Dual-Expression plasmid vector.

References

  1. Acland GM, Aguirre GD, Bennett J et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082CrossRefPubMedGoogle Scholar
  2. Aherne A, Kennan A, Kenna PF et al (2004) On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa. Hum Mol Gen 13:641–650CrossRefPubMedGoogle Scholar
  3. Auricchio A, Kobinger G, Anand V et al (2001) Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Gen 10:3075–3081CrossRefPubMedGoogle Scholar
  4. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239CrossRefPubMedGoogle Scholar
  5. Bowne SJ, Liu Q, Sullivan LS et al (2006) Why do mutations in the ubiquitously expressed housekeeping gene IMPDH1 cause retina-specific photoreceptor degeneration? Invest Ophthalmol Vis Sci 47:3754–3765CrossRefPubMedGoogle Scholar
  6. Bowne SJ, Sullivan LS, Blanton SH et al (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Gen 11:559–568CrossRefPubMedGoogle Scholar
  7. Hauswirth W, Aleman TS, Kaushal S et al (2008) Phase I trial of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results. Hum Gene Ther 7:7Google Scholar
  8. Hildinger M, Auricchio A, Gao G,(2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 75 6199–6203CrossRefPubMedGoogle Scholar
  9. Illing ME, Rajan RS, Bence NF et al (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277:34150–34160CrossRefPubMedGoogle Scholar
  10. Jordan SA, Farrar GJ, Kenna PF et al (1993) Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet 4:54–58CrossRefPubMedGoogle Scholar
  11. Kennan A, Aherne A, Palfi A et al (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho–/– mice. Hum Mol Gen 11:547–557CrossRefPubMedGoogle Scholar
  12. Le Meur G, Stieger K, Smith AJ et al (2007) Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14:292–303CrossRefPubMedGoogle Scholar
  13. Lotery AJ, Yang GS, Mullins RF et al (2003) Adeno-associated virus type 5: transduction efficiency and cell type specificity in the primate retina. Hum Gen Ther 14:1663–1671CrossRefGoogle Scholar
  14. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248CrossRefPubMedGoogle Scholar
  15. Narfström K, Katz ML, Ford M et al (2003) In vivo gene therapy in young and adult RPE65–/– dogs produces long-term visual improvement. J Hered 94:31–37CrossRefPubMedGoogle Scholar
  16. O’Reilly M, Palfi A, Chadderton N et al (2007) RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81:127–135CrossRefPubMedGoogle Scholar
  17. Rabinowitz JE, Rolling F, Li C et al (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801CrossRefPubMedGoogle Scholar
  18. Rebello G, Ramesar R, Vorster A et al (2004) Apoptosis inducing signal sequence mutation in carbonic anhydrase IV indentified in patients with the RP17 form of retinitis pigmentosa. PNAS 101:6617–6622CrossRefPubMedGoogle Scholar
  19. 19. Stieger K, Schroeder J, Provost N et al (2008) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther doi:10.1038/mt.2008.283Google Scholar
  20. Weber M, Rabinowitz J, Provost N et al (2003) Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 7:774–781CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lawrence C.S. Tam
    • 1
  • Anna-Sophia Kiang
    • 1
  • Naomi Chadderton
    • 1
  • Paul F. Kenna
    • 1
  • Matthew Campbell
    • 1
  • Marian M. Humphries
    • 1
  • G. Jane Farrar
    • 1
  • Pete Humphries
    • 1
  1. 1.The Ocular Genetics Unit, Department of GeneticsTrinity College DublinDublin 2Ireland

Personalised recommendations