Skip to main content

Recent Insights into the Mechanisms Underlying Light-Dependent Retinal Degeneration from X. Laevis Models of Retinitis Pigmentosa

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

We have recently developed transgenic X. laevis models of retinitis pigmentosa based on the rhodopsin P23H mutation in the context of rhodopsin cDNAs derived from several different species. The mutant rhodopsin in these animals is expressed at low levels, with levels of export from the endoplasmic reticulum to the outer segment that depend on the cDNA context. Retinal degeneration in these models demonstrates varying degrees of light dependence, with the highest light dependence coinciding with the highest ER export efficiency. Rescue of light dependent retinal degeneration by dark rearing is in turn dependent on the capacity of the mutant rhodopsin to bind chromophore. Our results indicate that rhodopsin chromophore can act in vivo as a pharmacological chaperone for P23H rhodopsin, and that light-dependent retinal degeneration caused by P23H rhodopsin is due to reduced chromophore binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablonczy Z, Knapp DR, Darrow R et al (2000) Mass spectrometric analysis of rhodopsin from light damaged rats. Mol Vis 6:109–115

    CAS  PubMed  Google Scholar 

  • Berson EL (1980) Light deprivation and retinitis pigmentosa. Vision Res 20(12):1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    CAS  PubMed  Google Scholar 

  • Cohen GB, Yang T, Robinson PR et al (1993) Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 32(23):6111–6115

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AF, Molday RS (1996) Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc Natl Acad Sci U S A 93(24):13726–13730

    Article  CAS  PubMed  Google Scholar 

  • Govardhan CP, Oprian DD (1994) Active site-directed inactivation of constitutively active mutants of rhodopsin. J Biol Chem 269(9):6524–6527

    CAS  PubMed  Google Scholar 

  • Grayson C, Molday RS (2005) Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J Biol Chem 280(37):32521–32530

    Article  CAS  PubMed  Google Scholar 

  • Hubbard R (1958) The thermal stability of rhodopsin and opsin. J Gen Physiol 42(2):259–280

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Heth CA, Roof DJ (1995) P23H mutant human opsin in transgenic murine retina: truncation of N-terminus and lack of glycosylation. Invest Ophthalmol Vis Sci 36(4):S424

    Google Scholar 

  • Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33(20):6121–6128

    Article  CAS  PubMed  Google Scholar 

  • Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci 47(12):5137–5152

    Article  PubMed  Google Scholar 

  • Noorwez SM, Kuksa V, Imanishi Y et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278(16):14442–14450

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Malhotra R, McDowell JH et al (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279(16):16278–16284

    Article  CAS  PubMed  Google Scholar 

  • Olsson JE, Gordon JW, Pawlyk BS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9(5):815–830

    Article  CAS  PubMed  Google Scholar 

  • Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol, 90(8):1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Samardzija M, Wenzel A, Naash M et al (2006) Rpe65 as a modifier gene for inherited retinal degeneration. Eur J Neurosci 23(4):1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  • Sohocki MM, Daiger SP, Bowne SJ et al (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17(1):42–51

    Article  CAS  PubMed  Google Scholar 

  • Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 88(19):8840–8844

    Article  CAS  PubMed  Google Scholar 

  • Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241

    Article  PubMed  Google Scholar 

  • Tam BM, Moritz OL (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27(34):9043–9053

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Oglesby E, Marsh-Armstrong N (2008) Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Exp Eye Res 86(4):612–621

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orson L. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moritz, O.L., Tam, B.M. (2010). Recent Insights into the Mechanisms Underlying Light-Dependent Retinal Degeneration from X. Laevis Models of Retinitis Pigmentosa. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_58

Download citation

Publish with us

Policies and ethics