Skip to main content

Differences in Photoreceptor Sensitivity to Oxygen Stress Between Long Evans and Sprague-Dawley Rats

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Purpose: To examine the susceptibility of photoreceptors to hyperoxic stress in two rat strains, the pigmented Long Evans (LE) and the albino Sprague-Dawley (SD).

Methods: Adult LE and SD rats were exposed to hyperoxia (75% oxygen) for 14 days. Retinas were assessed for electroretinogram (ERG) responses, cell death, and expression of a retinal stress factor.

Results: In the LE strain, exposure to hyperoxia significantly reduced amplitudes of rod a-wave, rod b-wave and cone b-wave components of the ERG, and caused a 55-fold increase in photoreceptor cell death rates, and an upregulation of GFAP expression. In the SD strain, hyperoxic exposure had no measurable effect on the ERG response of rods or cones, and resulted in a modest (5-fold) increase in the rate of photoreceptor cell death.

Conclusions: In LE and SD strains, hyperoxia induces cell death specific to photoreceptors. The effect is an order of magnitude more severe in the pigmented LE strain suggesting a strong genetic component to oxygen sensitivity, as reported previously between the albino Balb/C and pigmented C57BL/6 strains of mice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Burke JM, Henry MM, Zareba M et al (2007) Photobleaching of melanosomes from retinal pigment epithelium: I. Effects on protein oxidation. Photochem Photobiol 83:920–924

    Article  CAS  PubMed  Google Scholar 

  • Chan-Ling T, Stone J (1993) Retinopathy of prematurity: origins in the architecture of the retina. Prog Retin Eye Res 12:155–178

    Google Scholar 

  • Chrysostomou V, Stone J, Stowe S et al (2008) The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods. Invest Ophthalmol Vis Sci 49:1116–1125

    Article  PubMed  Google Scholar 

  • Dunford R, Land EJ, Rozanowska M et al (1995) Interaction of melanin with carbon- and oxygen-centered radicals from methanol and ethanol. Free Radic Biol Med 19:735–740

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Li Y, Fant J et al (2002) Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium-derived factor in brown norway and Sprague-Dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes 51:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Geller S, Krowka R, Valter K et al (2006) Toxicity of hyperoxia to the retina: evidence from the mouse. Adv Exp Med Biol 572:425–437

    Article  PubMed  Google Scholar 

  • Nixon PJ, Bui BV, Armitage JA et al (2001) The contribution of cone responses to rat electroretinograms. Clin Exp Ophthalmol 29:193–196

    Article  CAS  Google Scholar 

  • Noell WK (1955) Visual cell effects of high oxygen pressures. Fed Proc 14:107–108

    Google Scholar 

  • Okoye G, Zimmer J, Sung J et al (2003) Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci 23:4164–4172

    CAS  PubMed  Google Scholar 

  • Padnick-Silver L, Kang Derwent JJ, Giuliano E et al (2006) Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration. Invest Ophthalmol Vis Sci 47:3683–3689

    Article  PubMed  Google Scholar 

  • Rozanowska M, Sarna T, Land EJ et al (1999) Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26:518–525

    Article  CAS  PubMed  Google Scholar 

  • Smit-McBride Z, Oltjen SL, Lavail MM et al (2007) A strong genetic determinant of hyperoxia-related retinal degeneration on mouse chromosome 6. Invest Ophthalmol Vis Sci 48:405–411

    Article  PubMed  Google Scholar 

  • Stone J, Maslim J, Valter-Kocsi K et al (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18:689–735

    Article  CAS  PubMed  Google Scholar 

  • van Wijngaarden P, Brereton HM, Coster DJ et al (2007) Genetic influences on susceptibility to oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 48:1761–1766

    Article  PubMed  Google Scholar 

  • van Wijngaarden P, Coster DJ, Brereton HM et al (2005) Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. Invest Ophthalmol Vis Sci 46:1445–1452

    Article  PubMed  Google Scholar 

  • Walsh N, Bravo-Nuevo A, Geller S et al (2004) Resistance of photoreceptors in the C57BL/6-c2J, C57BL/6 J, and BALB/cJ mouse strains to oxygen stress: evidence of an oxygen phenotype. Curr Eye Res 29:441–447

    Article  CAS  PubMed  Google Scholar 

  • Wellard J, Lee D, Valter K et al (2005) Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia. Visual Neurosci 22:222–229

    Google Scholar 

  • Yamada H, Yamada E, Hackett SF et al (1999) Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179:149–156

    Article  CAS  PubMed  Google Scholar 

  • Ye T, Simon JD, Sarna T (2003) Ultrafast energy transfer from bound tetra(4-N,N,N,N-trimethylanilinium) porphyrin to synthetic dopa and cysteinyldopa melanins. Photochem Photobiol 77:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yu D-Y, Cringle SJ, Su E-N et al (2000) Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat. Invest Ophthalmol Vis Sci 41:3999–4006

    CAS  PubMed  Google Scholar 

  • Yu D-Y, Cringle S, Valter K et al (2004) Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest Ophthalmol Vis Sci 45:2013–2019

    Article  PubMed  Google Scholar 

  • Zadlo A, Rozanowska MB, Burke JM et al (2007) Photobleaching of retinal pigment epithelium melanosomes reduces their ability to inhibit iron-induced peroxidation of lipids. Pigment Cell Res 20:52–60

    Article  CAS  PubMed  Google Scholar 

  • Zareba M, Sarna T, Szewczyk G et al (2007) Photobleaching of melanosomes from retinal pigment epithelium: II. Effects on the response of living cells to photic stress. Photochem Photobiol 83:925–930

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Erb C, Flammer J et al (2000) Absolute rate constants for the quenching of reactive excited states by melanin and related 5,6-dihydroxyindole metabolites: implications for their antioxidant activity. Photochem Photobiol 71:524–533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki Chrysostomou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chrysostomou, V., Stone, J., Valter, K. (2010). Differences in Photoreceptor Sensitivity to Oxygen Stress Between Long Evans and Sprague-Dawley Rats. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_54

Download citation

Publish with us

Policies and ethics