Skip to main content

Genotypic Analysis of X-linked Retinoschisis in Western Australia

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

X-linked Retinoschisis is a leading cause of juvenile macular degeneration. Four Western Australian families affected by X-Linked Retinoschisis were analysed using DNA and clinical information from the Australian Inherited Retinal Disease (IRD) Register and DNA Bank. By direct sequencing of the RS1 gene, three genetic variants were identified; 52+1G > T, 289T > G and 416delA. 289T > G has not been previously reported and is likely to cause a substitution of a membrane binding residue (W92G) in the functional discoidin domain. All clinically diagnosed individuals showed typical electronegative ERGs. The 52+1G > T obligate carrier also recorded a bilaterally abnormal rod ERG and mildly abnormal photopic responses. mfERG trace arrays showed reduced response densities in the paramacular region extending futher temporally for each eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Deutman AF (1971) Sex-linked retinoschisis. In: Deutman AF (ed) The hereditary dystrpohies of the posterior pole of the eye. Van Gorcum, Assen, Netherlands

    Google Scholar 

  • Eksandh L, Andreasson S, Abrahamson M (2005) Juvenile x-linked retinoschisis with normal scotopic b-wave in the electroretinogram at an early stage of the disease. Ophthalmic Genet 26(3):111–117

    Article  PubMed  Google Scholar 

  • Forsius H, Krause U, Helve J et al (1973) Visual acuity in 183 cases of x-chromosomal retinoschisis. Can J Ophthalmol 8(3):385–393

    CAS  PubMed  Google Scholar 

  • Fraternali F, Cavallo L, Musco G (2003) Effects of pathological mutations on the stability of a conserved amino acid triad in retinoschisin. FEBS Lett 544(1–3):21–26

    Article  CAS  PubMed  Google Scholar 

  • George ND, Yates JR, Moore AT (1995) X linked retinoschisis. Br J Ophthalmol 79(7):697–702

    Article  CAS  PubMed  Google Scholar 

  • Hewitt AW, FitzGerald LM, Scotter LW et al (2005) Genotypic and phenotypic spectrum of x-linked retinoschisis in australia. Clin Exp Ophthalmol 33(3):233–239

    Article  Google Scholar 

  • Kellner U, Brummer S, Foerster MH et al (1990) X-linked congenital retinoschisis. Graefes Arch Clin Exp Ophthalmol 228(5):432–437

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Neely KA, Sassani JW et al (2006) X-linked retinoschisis: novel mutation in the initiation codon of the xlrs1 gene in a large family. Retina 26(8):940–946

    Article  PubMed  Google Scholar 

  • Lyon MF (1962) Sex chromatin and gene action in the mammalian x-chromosome. Am J Hum Genet 14:135–148

    CAS  PubMed  Google Scholar 

  • Mashima Y, Shinoda K, Ishida S et al (1999) Identification of four novel mutations of the xlrs1 gene in japanese patients with x-linked juvenile retinoschisis. Mutation in brief no. 234. Online. Hum Mutat 13(4):338

    Article  CAS  PubMed  Google Scholar 

  • Molday LL, Wu WW, Molday RS (2007) Retinoschisin (rs1), the protein encoded by the x-linked retinoschisis gene, is anchored to the surface of retinal photoreceptor and bipolar cells through its interactions with a na/k atpase-sarm1 complex. J Biol Chem 282(45):32792–32801

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Gutierrez S, Lopez-Rodriguez ML (2005) Cb1 and cb2 cannabinoid receptor binding studies based on modeling and mutagenesis approaches. Mini Rev Med Chem 5(7):651–658

    Article  CAS  PubMed  Google Scholar 

  • Piao CH, Kondo M, Nakamura M et al (2003) Multifocal electroretinograms in x-linked retinoschisis. Invest Ophthalmol Vis Sci 44(11):4920–4930

    Article  PubMed  Google Scholar 

  • Pimenides D, George ND, Yates JR et al (2005) X-linked retinoschisis: clinical phenotype and rs1 genotype in 86 uk patients. JMedGenet 42(6):e35

    CAS  Google Scholar 

  • Sauer CG, Gehrig A, Warneke-Wittstock R et al (1997) Positional cloning of the gene associated with x-linked juvenile retinoschisis. Nat Genet 17(2):164–170

    Article  CAS  PubMed  Google Scholar 

  • Tantri A, Vrabec TR, Cu-Unjieng A et al (2004) X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 49(2):214–230

    Article  PubMed  Google Scholar 

  • The Retinoschisis Consortium (1998) Functional implications of the spectrum of mutations found in 234 cases with x-linked juvenile retinoschisis. Hum Mol Genet 7(7):1185–1192

    Article  Google Scholar 

  • Tsang SH, Vaclavik V, Bird AC et al (2007) Novel phenotypic and genotypic findings in x-linked retinoschisis. Arch Ophthalmol 125(2):259–267

    Article  CAS  PubMed  Google Scholar 

  • Vijayasarathy C, Takada Y, Zeng Y et al (2007) Retinoschisin is a peripheral membrane protein with affinity for anionic phospholipids and affected by divalent cations. Invest Ophthalmol Vis Sci 48(3):991–1000

    Article  PubMed  Google Scholar 

  • Wang T, Waters CT, Rothman AM et al (2002) Intracellular retention of mutant retinoschisin is the pathological mechanism underlying x-linked retinoschisis. Hum Mol Genet 11(24):3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Wu WW, Molday RS (2003) Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for x-linked retinoschisis. J Biol Chem 278(30):28139–28146

    Article  CAS  PubMed  Google Scholar 

  • Wu WW, Wong JP, Kast J et al (2005) Rs1, a discoidin domain-containing retinal cell adhesion protein associated with x-linked retinoschisis, exists as a novel disulfide-linked octamer. J Biol Chem 280(11):10721–10730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Western Australian Retinitis Pigmentosa Foundation for their generous funding, and the assistance of the Western Australian DNA Bank (NHMRC Enabling Facility) with DNA samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Lamey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lamey, T., Laurin, S., Chelva, E., De Roach, J. (2010). Genotypic Analysis of X-linked Retinoschisis in Western Australia. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_32

Download citation

Publish with us

Policies and ethics