Skip to main content

1 Rhodopsin Mutations in Congenital Night Blindness

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

While there are over 100 distinct mutations in the rhodopsin gene that are found in patients with the degenerative disease autosomal dominant retinitis pigmentosa (ADRP), there are only four known mutations in the rhodopsin gene found in patients with the dysfunction congenital stationary night blindness (CSNB). CSNB patients have a much less severe phenotype than those with ADRP; the patients only lose rod function which affects their vision under dim light conditions, whereas their cone function remains relatively unchanged. The known rhodopsin CSNB mutations are found clustered around the site of retinal attachment. Two of the mutations encode replacements of neutral amino acids with negatively charged ones (A292E and G90D), and the remaining two are neutral amino acid replacements (T94I and A295V). All four of these mutations have been shown to constitutively activate the apoprotein in vitro. The mechanisms by which these mutations lead to night blindness are still not known with certainty, and remain the subject of some controversy. The dominant nature of these genetic defects, as well as the relative normalcy of vision in individuals with half the complement of wild type rhodopsin, suggest that it is an active property of the mutant opsin proteins that leads to defective rod vision rather than a loss of some needed function. Herein, we review the known biochemical and electrophysiological data for the four known rhodopsin mutations found in patients with CSNB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • al-Jandal N, Farrar GJ, Kiang A-S et al (1999) A novel mutation within the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum Mutat 13:75–81

    Article  CAS  PubMed  Google Scholar 

  • Barlow HB (1988) The thermal limit to seeing. Nature 334:296–297

    Article  CAS  PubMed  Google Scholar 

  • Baylor DA, Matthews G, Yau KW (1980) Two components of electrical dark noise in road retinal rod outer segments. J Physiol 309:591–621

    CAS  PubMed  Google Scholar 

  • Baylor DA, Nunn BJ, Schnapf JL (1984) The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol (Lond) 357:575–607

    CAS  Google Scholar 

  • Cornwall MC, Fain GL (1994) Bleaching pigment activates transducin in isolated rods of the salamander retina. J Physiol (Lond) 480:261–279

    CAS  Google Scholar 

  • Dizhoor A, Woodruff M, Olshevskaya E et al (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J Neurosci 28:11662–11672

    Article  CAS  PubMed  Google Scholar 

  • Dowling JE (1960) Chemistry of visual adaptation in the rat. Nature 188:114–118

    Article  CAS  PubMed  Google Scholar 

  • Dryja TP, Berson EL, Rao VR et al (1993) Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 4:280–283

    Article  CAS  PubMed  Google Scholar 

  • Gal A, Orth U, Baehr W et al (1994) Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet 7:551

    Article  CAS  PubMed  Google Scholar 

  • Gross AK, Rao VR, Oprian DD (2003) Characterization of rhodopsin congenital night blindness mutant T94I. Biochemistry 42:2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Gross AK, Xie G, Oprian DD (2003) Slow binding of retinal to rhodopsin mutants G90D and T94D. Biochemistry 42:2002–2008

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Cornwall MC, Oprian DD (2003) Opsin activation as a cause of congenital night blindness. Nat Neurosci 6:731–735

    Article  CAS  PubMed  Google Scholar 

  • Keen TJ, Inglehearn CF, Lester DH et al (1991) Autosomal dominant retinitis pigmentosa: four new mutations in rhodopsin, one of the in the retinal attachment site. Genomics 11:199–205

    Article  CAS  PubMed  Google Scholar 

  • Krispel CM, Chen D, Melling N et al (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416

    Article  CAS  PubMed  Google Scholar 

  • Krispel CM, Chen CK, Simon MI et al (2003) Novel form of adaptation in mouse retinal rods speeds recovery of phototransduction. J Gen Physiol 122:703–712

    Article  CAS  PubMed  Google Scholar 

  • Lem J, Krasnoperova NV, Calvert PD, et al (1999) Morphological, physiological and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 96:736–741

    Article  CAS  PubMed  Google Scholar 

  • Melia TJ, Cowan CW, Angelson JK et al (1997) A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin. Biophys J 73:3182–3191

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Balogh-Nair V, Arnaboldi M et al (1980) An external point-charge model for bacteriorhodopsin to account for its purple color. J Am Chem Soc 102:7945–7947

    Article  CAS  Google Scholar 

  • Nathans J (1990) Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29:9746–9752

    Article  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed  Google Scholar 

  • Rao V, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–642

    Article  CAS  PubMed  Google Scholar 

  • Rieke F, Baylor DA (1996) Molecular origin of continuous dark noise in rod photoreceptors. Biophys J 71:2553–2572

    Article  CAS  PubMed  Google Scholar 

  • Robinson PR, Cohen GB, Zhukovsky EA et al (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–725

    Article  CAS  PubMed  Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci USA 86:8309–8313

    Article  CAS  PubMed  Google Scholar 

  • Sieving PA, Fowler ML, Bush RA et al (2001) Constitutive “light” adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J Neurosci 21:5449–5460

    CAS  PubMed  Google Scholar 

  • Sieving PA, Richards JE, Naarendorp F et al (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90 –> Asp mutation. Proc Natl Acad Sci 92:880–884

    Article  CAS  PubMed  Google Scholar 

  • Steinberg G, Ottolenghi M, Sheves M (1993) pKa of the protonated Schiff base of bovine rhodopsin: A study with artificial pigments. Biophys J 64:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Scott KM, Falls HF et al (1993) A novel rhodopsin mutation at the retinal binding site (LYS 296 MET) in ADRP. Invest Ophthalmol Vis Sci 34:1149

    Google Scholar 

  • Szabo V, Kreienkamp H-J, Rosenberg T et al (2007) p.Gln200Glu, a putative constitutively active mutant of rod á-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Hum Mutat 28:741–742

    Article  PubMed  Google Scholar 

  • Tam B, Moritz O (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27(34):9043–9053

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Gross AK, Oprian DD (2003) An opsin mutant with increased thermal stability. Biochemistry 42:1995–2001

    Article  CAS  PubMed  Google Scholar 

  • Zeitz C, Gross AK, Leifert D et al (2008) Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Invest Ophthalmol Visc Sci 49:4105–4114

    Article  Google Scholar 

  • Zhukovsky EA, Robinson PR, Oprian DD (1992) Changing the location of the Schiff base counterion in rhodopsin. Biochemistry 31:10400–10405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank T.G. Wensel and V.E. Wotring for critical comments on this manuscript. Our research is supported by grants from the EyeSight Foundation of Alabama, the Karl Kirchgessner Foundation, and by NIH grant EY019311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alecia K. Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McAlear, S.D., Kraft, T.W., Gross, A.K. (2010). 1 Rhodopsin Mutations in Congenital Night Blindness. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_30

Download citation

Publish with us

Policies and ethics