Skip to main content

Photoreceptor Sensory Cilia and Inherited Retinal Degeneration

  • Chapter
  • First Online:
Book cover Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

The outer segments of photoreceptor cells are specialized sensory cilia, and share many features with other primary and sensory cilia. Like other cilia, photoreceptor sensory cilium (PSC) comprises a membrane domain of outer segment and its cytoskeleton. We have recently identified the protein components of mouse PSCs, and found that the list of PSC proteins, called the PSC proteome, contains many novel cilia proteins. Studies have shown that many of the identified retinal degeneration disease genes encode proteins which are part of the PSC. Furthermore, mutations in genes encoding proteins expressed both in photoreceptors and other cilia result in systemic diseases, such as Usher syndrome, Bardet-Biedl syndrome (BBS), and Senior-Loken syndrome that involve retinal degeneration along with other disorders consequent to cilia dysfunction such as deafness and polycystic kidney disease. Based on these findings, we hypothesize that genes that encode proteins required for formation of PSCs are good candidate retinal degeneration disease genes. This chapter will summarize our studies on identifying novel PSC proteins from the PSC proteome. As an example of these studies, we demonstrated that tetratricopeptide the repeat domain 21B (TTC21B) protein is a novel PSC protein and is required for normal cilia formation in primary and photoreceptor sensory cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RA (1965) Isolated cilia in inner retinal neurons and in retinal pigment epithelium. J Ultrastruct Res 12:730–747

    Article  CAS  PubMed  Google Scholar 

  • Ansley SJ, Badano JL, Blacque OE et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425:628–633

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL et al (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Berbari NF, Johnson AD, Lewis JS et al (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell 19:1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Breunig JJ, Sarkisian MR, Arellano JI et al (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci USA 105:13127–13132

    Article  CAS  PubMed  Google Scholar 

  • Cantagrel V, Silhavy JL, Bielas SL et al (2008) Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet 83:170–179

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Khanna H, Hawes N et al (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15:1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Christensen ST, Pedersen LB, Schneider L et al (2007) Sensory cilia and integration of signal transduction in human health and disease. Traffic 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125:151–158

    Article  CAS  PubMed  Google Scholar 

  • Davis EE, Brueckner M, Katsanis N (2006) The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle. Dev Cell 11:9–19

    Article  CAS  PubMed  Google Scholar 

  • De Robertis E (1956) Electron microscope observations on the submicroscopic organization of the retinal rods. J Biophys Biochem Cytol 2:319–330

    Article  Google Scholar 

  • den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of leber congenital amaurosis. Am J Hum Genet 79:556–561

    Article  CAS  PubMed  Google Scholar 

  • den Hollander AI, Koenekoop RK, Mohamed MD et al (2007) Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 39: 889–895

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Esmail MA, Ansley SJ et al (2004) Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 36:989–993

    Article  CAS  PubMed  Google Scholar 

  • Fliegauf M, Horvath J, von SC et al (2006) Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol 17:2424–2433

    Article  CAS  PubMed  Google Scholar 

  • Gerdes JM, Liu Y, Zaghloul NA et al (2007) Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39:1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Gherman A, Davis EE, Katsanis N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38:961–962

    Article  CAS  PubMed  Google Scholar 

  • Giulietti A, Overbergh L, Valckx D et al (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  CAS  PubMed  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Hong DH, Pawlyk BS, Shang J et al (2000) A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 97:3649–3654

    Article  CAS  PubMed  Google Scholar 

  • Horst CJ, Johnson LV, Besharse JC (1990) Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope. Cell Motil Cytoskeleton 17:329–344

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MW, Iwata RT, Sears RC (1987) Lengths of immunolabeled ciliary microtubules in frog photoreceptor outer segments. Exp Eye Res 44:623–632

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhou J, Daiger SP et al (2002) Identification and Subcellular Localization of the RP1 Protein in Human and Mouse Photoreceptors. Invest Ophthalmol Vis Sci 43:22–32

    PubMed  Google Scholar 

  • Liu Q, Zuo J, Pierce EA (2004) The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 24:6427–6436

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Tan G, Levenkova N et al (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299–1317

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Vansant G, Udovichenko IP et al (1997) Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil Cytoskeleton 37:240–252

    Article  CAS  PubMed  Google Scholar 

  • Maerker T, van WE, Overlack N et al (2008) A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet 17:71–86

    Article  CAS  PubMed  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22

    Article  CAS  PubMed  Google Scholar 

  • Matsusaka T (1974) Membrane Particles of the Connecting Cilium. J Ultrastruct Res 48:305–312

    Article  Google Scholar 

  • Otto EA, Loeys B, Khanna H et al (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37:282–288

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wang Q, Snell WJ (2005) Cilium-generated signaling and cilia-related disorders. Lab Invest 85:452–463

    Article  CAS  PubMed  Google Scholar 

  • Reiners J, Marker T, Jurgens K et al (2005a) Photoreceptor expression of the Usher syndrome type 1 protein protocadherin 15 (USH1F) and its interaction with the scaffold protein harmonin (USH1C). Mol Vis 11:347–355

    CAS  PubMed  Google Scholar 

  • Reiners J, van Wijk E, Marker T et al (2005b) Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 14:3933–3943

    Article  CAS  PubMed  Google Scholar 

  • RetNet (2008) RetNet Web site address.

    Google Scholar 

  • Roepman R, Letteboer SJ, Arts HH et al (2005) Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis-associated mutations. Proc Natl Acad Sci USA 102:18520–18525

    Article  CAS  PubMed  Google Scholar 

  • Sayer JA, Otto EA, O’Toole JF et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38:674–681

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540

    Article  CAS  PubMed  Google Scholar 

  • Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633

    Article  CAS  PubMed  Google Scholar 

  • Slough J, Cooney L, Brueckner M (2008) Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn 237:2304–2314

    Article  PubMed  Google Scholar 

  • Tran PV, Haycraft CJ, Besschetnova TY et al (2008) THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 40:403–410

    Article  CAS  PubMed  Google Scholar 

  • Tucker RW, Pardee AB, Fujiwara K (1979) Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17:527–535

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Silhavy JL, Brancati F et al (2006) Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 38:623–625

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Gao J, Adamian M et al (2005) The ciliary rootlet maintains long-term stability of sensory cilia. Mol Cell Biol 25:4129–4137

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hong DH, Pawlyk B et al (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci USA 100:3965–3970

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, Q., Zhang, Q., Pierce, E.A. (2010). Photoreceptor Sensory Cilia and Inherited Retinal Degeneration. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_26

Download citation

Publish with us

Policies and ethics