Advertisement

Regulation of Angiogenesis by Macrophages

  • Rajendra S. Apte
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 664)

Abstract

Abnormal angiogenesis is a cardinal feature in the pathophysiology of several diseases of the retina including retinopathy of prematurity, diabetic retinopathy and choroidal neovascularization associated with age-related macular degeneration. Recent evidence has implicated macrophages as components of the innate immune system that play a key role in regulating angiogenesis in the retina and choroid. This review will focus on the role of macrophages in regulating ocular angiogenesis.

Keywords

Diabetic Retinopathy Tumor Associate Macrophage Macrophage Polarization Macrophage Phenotype Immune Privilege 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397CrossRefPubMedGoogle Scholar
  2. Apte RS, Mayhew E, Niederkorn JY (1997) Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest Ophthalmol Vis Sci 38:1277–1282PubMedGoogle Scholar
  3. Apte RS, Niederkorn JY (1996) Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. J Immunol 156:2667–2673PubMedGoogle Scholar
  4. Apte RS, Richter J, Herndon J et al (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3:310–320CrossRefGoogle Scholar
  5. Brown DM, Kaiser PK, Michels M et al (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444CrossRefPubMedGoogle Scholar
  6. Dace DS, Khan AA, Kelly J et al (2008) Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLoS ONE 3:e3381CrossRefPubMedGoogle Scholar
  7. Edwards AO, Ritter R 3rd, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424CrossRefPubMedGoogle Scholar
  8. Espinosa-Heidmann DG, Suner I, Hernandez EP et al (2002) Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43:1567–1573PubMedGoogle Scholar
  9. Espinosa-Heidmann DG, Suner IJ, Hernandez EP et al (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592CrossRefPubMedGoogle Scholar
  10. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695CrossRefPubMedGoogle Scholar
  11. Kaplan HJ, Leibole MA, Tezel T et al (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5:292–297CrossRefPubMedGoogle Scholar
  12. Kelly J, Khan AA, Yin J et al (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117:3421–3426CrossRefPubMedGoogle Scholar
  13. Klein R, Peto T, Bird A et al (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495CrossRefPubMedGoogle Scholar
  14. Lin HH, Faunce DE, Stacey M et al (2005) The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201:1615–1625CrossRefPubMedGoogle Scholar
  15. Lobov IB, Rao S, Carroll TJ et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421CrossRefPubMedGoogle Scholar
  16. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212CrossRefPubMedGoogle Scholar
  17. Nakao S, Kuwano T, Tsutsumi-Miyahara C et al (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1beta-induced neovascularization and tumor growth. J Clin Invest 115:2979–2991CrossRefPubMedGoogle Scholar
  18. Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359CrossRefPubMedGoogle Scholar
  19. Rosenfeld PJ, Brown DM, Heier JS et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431CrossRefPubMedGoogle Scholar
  20. Sakurai E, Anand A, Ambati BK et al (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585CrossRefPubMedGoogle Scholar
  21. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107CrossRefPubMedGoogle Scholar
  22. Taylor PR, Martinez-Pomares L, Stacey M et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944CrossRefPubMedGoogle Scholar
  23. Welge-Lussen U, Wilsch C, Neuhardt T et al (1999) Loss of anterior chamber-associated immune deviation (ACAID) in aged retinal degeneration (rd) mice. Invest Ophthalmol Vis Sci 40:3209–3214PubMedGoogle Scholar
  24. van Leeuwen R, Klaver CC, Vingerling JR et al (2003) Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 18:845–854CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Ophthalmology and Visual Sciences, Developmental Biology, Barnes Retina InstituteWashington University School of MedicineSt. LouisUSA

Personalised recommendations