Skip to main content

Biomaterials: Considerations for Endovascular Devices

  • Chapter
  • First Online:
Peripheral Endovascular Interventions
  • 1433 Accesses

Abstract

Continued evolution of catheter-based technology has expanded applications of endovascular therapy for the treatment of cardiac and peripheral vascular diseases. Research and development advances have affected metal, textile, and polymer biomaterials and have facilitated refinements in design and construction of endovascular devices. As a result, the performance of these devices has improved, complications have been reduced, and the uses of minimally invasive applications have expanded. This chapter reviews the biomaterial properties and design characteristics of existing guidewires, angioplasty balloons and catheters, and metallic intravascular stents and filters with reference to their implementation and function. Design and biomaterial considerations for newer endoluminal grafts and their applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroder J: The mechanical properties of guidewires. Part I. Stiffness and torsional strength, Cardiovasc Intervent Radiol 16:43–46, 1993.

    PubMed  CAS  Google Scholar 

  2. Schroder J: The mechanical properties of guidewires. Part II. Kinking resistance, Cardiovasc Intervent Radiol 16:47–48, 1993.

    PubMed  CAS  Google Scholar 

  3. Schroder J: The mechanical properties of guidewires. Part III. Sliding friction, Cardiovasc Intervent Radiol 16:93–97, 1993.

    PubMed  CAS  Google Scholar 

  4. Gruntzig A, Hopff H: Percutane Rekanalisation chronischer arterieller Verschlusse mit einem neuen Dilatationskatheter: Modification der Dotter-Technik, Dtsch Med Wochenschr 99:2502–2505, 1974.

    PubMed  CAS  Google Scholar 

  5. Castaneda-Zuniga WR, Formanek A, Tadaverthy M et al.: The mechanism of balloon angioplasty, Radiology 135:565–571, 1980.

    PubMed  CAS  Google Scholar 

  6. Chin AK, Kinney TB, Rurik GW et al.: A physical measurement of the mechanisms of transluminal angioplasty, Surgery 95:196–200, 1983.

    Google Scholar 

  7. Waller BF: The eccentric coronary atherosclerotic plaque: morphologic observations and clinical relevance, Clin Cardiol 12:14–20, 1989.

    PubMed  CAS  Google Scholar 

  8. Abele JE: Balloon catheters and transluminal dilatation: technical considerations, Am J Radiol 135:901–906, 1980.

    CAS  Google Scholar 

  9. Abele JE: Balloon catheter technology. In Castaneda-Zuniga WR, Tadavarthy SM, editors: Interventional radiology, Baltimore, 1992, Williams & Wilkins, pp. 345–350.

    Google Scholar 

  10. Matsumoto AH, Barth KH, Selby JB, Tegtmeyer CJ: Peripheral angioplasty balloon technology, Cardiovasc Intervent Radiol 16:135–143, 1993.

    PubMed  CAS  Google Scholar 

  11. Jacobs AK: Selection of guiding catheters. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp. 43–52.

    Google Scholar 

  12. Abele JE: Balloon engineering and materials. In Vlietstra RE, Holmes DR, editors: Coronary balloon angioplasty, Boston, 1994, Blackwell Scientific, pp. 292–304.

    Google Scholar 

  13. Faxon DP: Selection of balloon catheters and guidewires. In Faxon DP, editor: Practical angioplasty, New York, 1993, Raven Press, pp. 53–70.

    Google Scholar 

  14. Fan YL:: Hydrophilic polymers. In Salamone JC, editor: Polymeric materials encyclopedia, Boca Raton, FL, 1996, CRC Press, pp. 3107–3114.

    Google Scholar 

  15. Williams DF: The selection of implant materials. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders.

    Google Scholar 

  16. Sutow EJ, Pollack SR: The biocompatibility of certain stainless steels. In Williams DF, editor: Biocompatibility of clinical implants materials, vol. 1, Boca Raton, 1981, CRC Press.

    Google Scholar 

  17. Williams DF: The deterioration of materials in use. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders.

    Google Scholar 

  18. Palmaz JC: Balloon expandable intravascular stent, AJR 150:1263–1269, 1988.

    PubMed  CAS  Google Scholar 

  19. Crochet D et al.: Plasma treatment effects on the tantalum Strecker stent implanted in femoral arteries of sheep, Cardiovasc Intervent Radiol 17:285–291, 1994.

    PubMed  CAS  Google Scholar 

  20. Lemons JE: Corrosion and biodegradation. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan.

    Google Scholar 

  21. Fisher AA: Safety of stainless steel in nickel sensitivity, JAMA 221:1282, 1972.

    Google Scholar 

  22. Fisher AA: Allergic dermatitis presumably due to metallic bodies containing nickel or cobalt, Cutis 19:285, 1977.

    PubMed  CAS  Google Scholar 

  23. Samitz MH, Katz SA: Nickel dermatitis hazards from prostheses: in vivo and in vitro solubility studies, Br J Dermatol 92:287, 1975.

    PubMed  CAS  Google Scholar 

  24. Lyell A, Bain WH: Nickel allergy and valve replacement, Lancet 1:408, 1974.

    PubMed  CAS  Google Scholar 

  25. Pegum JS:: Nickel allergy, Lancet 1:674, 1974.

    PubMed  CAS  Google Scholar 

  26. Williams DF: The response of the body environment to implants. In Williams DF, Roaf R, editors: Implants in surgery, London, 1973, Saunders.

    Google Scholar 

  27. Sawyer PN et al.: Electrochemical precipitation of blood cells on metal electrodes: an aid in the selection of vascular prostheses, Natl Acad Sci 53:294, 1965.

    CAS  Google Scholar 

  28. De Palma VA et al.: Investigation of three-surface properties of several metals and their relation to blood compatibility, J Biomed Mater Res Symp 3:37, 1972.

    Google Scholar 

  29. Sawyer PN et al.: Electron microscopy and physical chemistry of healing in prosthetic heart valves, skirts and struts, J Thorac Cardiovasc Surg 67(1):24, 1974.

    PubMed  CAS  Google Scholar 

  30. Sawyer PN, Sophie Z, O’Shaughnessy AM: Hemo-compatibility assessment. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan.

    Google Scholar 

  31. Palmaz JC: Intravascular stents: tissue–stent interactions and design considerations, AJR 160:613, 1993.

    PubMed  CAS  Google Scholar 

  32. Robinson KA et al.: Correlated microscopic observations of arterial responses to intravascular stenting, Scanning Microsc 3:665, 1989.

    PubMed  CAS  Google Scholar 

  33. Rousseau H et al.: Self-expanding endovascular prosthesis: an experimental study, Radiology 164:709, 1987.

    PubMed  CAS  Google Scholar 

  34. Greenfield LJ, Savin MA: Comparison of titanium and stainless steel Greenfield vena caval filters, Surgery 106:820, 1989.

    PubMed  CAS  Google Scholar 

  35. Back M, Kopchok G, Mueller M et al.: Changes in arterial wall compliance after endovascular stenting, J Vasc Surg 19:905–911, 1994.

    PubMed  CAS  Google Scholar 

  36. Palmaz JC et al.: Normal and stenotic renal arteries: experimental balloon-expandable intraluminal stenting, Radiology 164:705, 1987.

    PubMed  CAS  Google Scholar 

  37. Schatz RA: A view of vascular stents, Circulation 79:445, 1989.

    PubMed  CAS  Google Scholar 

  38. Vorwerk D et al.: Neointima formation following arterial placement of self-expanding stents of different radial force: experimental results, Cardiovasc Intervent Radiol 17:27, 1994.

    PubMed  CAS  Google Scholar 

  39. Barth KH et al.: Flexible tantalum stents implanted in aortas and iliac arteries: effects in normal canines, Radiology 175:91, 1990.

    PubMed  CAS  Google Scholar 

  40. White CJ et al.: A new balloon-expandable tantalum coil stent: angiographic patency and histologic findings in an atherogenic swine model, J Am Coll Cardiol 19:870, 1992.

    PubMed  CAS  Google Scholar 

  41. Sutton CS et al.: Titanium-nickel intravascular endoprosthesis: a 2-year study in dogs, AJR 151:597, 1988.

    PubMed  CAS  Google Scholar 

  42. Roubin G et al.: Early and late results of intracoronary arterial stenting after coronary angioplasty in the dog, Circulation 76:891, 1987.

    PubMed  CAS  Google Scholar 

  43. Rollins N et al.: Self-expanding metallic stents: preliminary evaluation in an atherosclerotic model, Radiology 163:739, 1987.

    PubMed  CAS  Google Scholar 

  44. Den Otter G: Total prosthetic replacement of atrioventricular valves in the dog, Thorax 27:105, 1972.

    PubMed  CAS  Google Scholar 

  45. Strecker EP et al.: Expandable tubular stents for treatment of arterial occlusive diseases: experimental and clinical results, Radiology 175:97, 1990.

    PubMed  CAS  Google Scholar 

  46. Von Holst H, Collins P, Steiner L: Titanium, silver and tantalum clips in brain tissue, Acta Neurochir (Wien) 56:239, 1981.

    Google Scholar 

  47. Keller JC, Lautenschlager EP: Metal and alloys. In von Recum A, editor: Handbook of biomaterials evaluation, New York, 1986, Macmillan.

    Google Scholar 

  48. Hearn JA, Robinson KA, Roubin GS: In vitro thrombus formation of stent wires: role of metallic composition and heparin coating [abstract], J Am Coll Cardiol 17:302A, 1991.

    Google Scholar 

  49. Ribeiro PA et al.: A new expandable intracoronary tantalum (Strecker) stent: early experimental results and follow-up to twelve months, Am Heart J 125:501, 1993.

    PubMed  CAS  Google Scholar 

  50. Fontaine AB et al.: Decreased platelets adherence of polymer-coated tantalum stents, J Vasc Intervent Radiol 5:567, 1994.

    CAS  Google Scholar 

  51. Williams DF: Titanium and titanium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol. 1, Boca Raton, 1981, CRC Press.

    Google Scholar 

  52. Williams DF: Titanium as a metal for implantation. Part 2. Biological properties and clinical applications, J Med Eng Technol 1:266–270, September 1977.

    PubMed  CAS  Google Scholar 

  53. Schetky LM: Shape-memory alloys, Sci Am 241:74, 1979.

    CAS  Google Scholar 

  54. Cragg AH et al.: Nitinol intravascular stents: results of preclinical evaluation, Radiology 189:775, 1993.

    PubMed  CAS  Google Scholar 

  55. Stankiewicz JM, Robertson SW, Ritchie RO: Fatigue-crack growth properties of thin walled superelastic austenitic Nitinol tube for endovascular stents, J Biomech Mater Res A 81:685, 2007.

    CAS  Google Scholar 

  56. Castleman LS, Motzkin SM: The biocompatibility of nitinol. In Williams DF, editor: Biocompatibility of clinical implant materials, vol. 1, Boca Raton, 1981, CRC Press.

    Google Scholar 

  57. Haasters J, Bensmann G, Baumgart F: Memory alloys: a new material for implantation in orthopedic surgery. Part II. In Uhthoff HK, editor: Current concepts of internal fixation of fractures, New York, 1980, Springer-Verlag.

    Google Scholar 

  58. Castleman LS et al.: Biocompatibility of nitinol alloy as an implant material, J Biomed Mater Res 10:695, 1976.

    PubMed  CAS  Google Scholar 

  59. Oonishi H et al.: Biological reaction of Ni in TiNi shape memory alloy, Trans Soc Biomater 7:183, 1984.

    Google Scholar 

  60. Williams DF: The properties and clinical uses of cobalt-chromium alloys. In Williams DF, editor: Biocompatibility of clinical implant materials, vol. I, Boca Raton, 1981, CRC Press.

    Google Scholar 

  61. Shellock FG, Kanal E: MR procedures and patients with biomedical implants, materials, and devices. In Shellock FG, Kanal E, editors: Magnetic resonance: bioeffects, safety and patient management, New York, 1994, Raven Press.

    Google Scholar 

  62. Teitelbaum GP, Bradley WG, Klein BD: MR imaging artifacts, ferromagnetism and magnetic torque of intravascular filters, stents and coils, Radiology 166:657, 1988.

    PubMed  CAS  Google Scholar 

  63. Matsumoto AH et al.: Tantalum vascular stents: in vivo evaluation with MR imaging, Radiology 170:753, 1989.

    PubMed  CAS  Google Scholar 

  64. Becker GJ: Intravascular stents, general principles and status of lower extremity arterial applications, Circulation 83(suppl I):122, 1991.

    Google Scholar 

  65. Fluckiger F et al.: Firmness, elasticity and deformation characteristics of metal stents [abstract], Cardiovasc Intervent Radiol 16(suppl):19, 1993.

    Google Scholar 

  66. Jedwab MR, Clerc CO: A study of the geometrical and mechanical properties of a self-expanding metallic stent—theory and experiment, J Appl Biomater 4:77, 1993.

    PubMed  CAS  Google Scholar 

  67. Fallone BG, Wallace S, Gianturco C: Elastic characteristics of self-expanding metallic stents, Invest Radiol 23:370, 1988.

    PubMed  CAS  Google Scholar 

  68. Abbott WM et al.: Effect of compliance mismatch on vascular graft patency, J Vasc Surg 5:376, 1987.

    PubMed  CAS  Google Scholar 

  69. Laird JR et al.: Placement and angiographic patency of the Strecker coronary stent, Cathet Cardiovasc Diagn 31:322, 1994.

    PubMed  CAS  Google Scholar 

  70. Santoian EC, King S: Intravascular stents, intimal proliferation and restenosis [editorial comment], J Am Coll Cardiol 19:877, 1992.

    PubMed  CAS  Google Scholar 

  71. Greenfield LJ, DeLucia A: Endovascular therapy of venous thromboembolic disease, Surg Clin North Am 72:969, 1992.

    PubMed  CAS  Google Scholar 

  72. Greenfield LJ et al.: Extended evaluation of the titanium Greenfield vena caval filter, J Vasc Surg 20:458, 1994.

    PubMed  CAS  Google Scholar 

  73. Teitelbaum GP et al.: Vena caval filter splaying: potential complication of use of the titanium Greenfield filter, Radiology 173:809, 1989.

    PubMed  CAS  Google Scholar 

  74. Ricco JB et al.: Percutaneous transvenous caval interruption with the “LGM” filter: early results of a multicenter trial, Ann Vasc Surg 3:242, 1988.

    Google Scholar 

  75. Dorfman GS: Percutaneous inferior vena cava filters, Radiology 174:987, 1990.

    PubMed  CAS  Google Scholar 

  76. Proctor MC, Greenfield LJ: Form and function of vena cava filters: how do optional filters measure up? Vascular 16:10, 2008.

    PubMed  Google Scholar 

  77. Rosenthal D, Wellons ED, Hancock SM, Burkett AB: Retrievability of the Gunther Tulip vena cava filter after dwell times longer than 180 days in patients with multiple trauma, J Endovasc Ther 14:406, 2007.

    PubMed  Google Scholar 

  78. Kalva SP, Athanasoulis CA, Fan CM et al.: Recovery vena cava filter: experience in 96 patients, Cardiovasc Intervent Radiol 29:559, 2006.

    PubMed  Google Scholar 

  79. Schutzer R, Ascher E, Hingorani A et al.: Preliminary results of the new 6F TrapEase inferior vena cava filter, Ann Vasc Surg 17:103, 2003.

    PubMed  Google Scholar 

  80. Van Ha TG, Chien AS, Funaki BS et al.: Use of a retrievable compared to permanent inferior vena cava filters: a single institution experience, Cardiovasc Intervent Radiol 31:308, 2008.

    PubMed  Google Scholar 

  81. Murphy EH, Johnson ED, Arko FR: Evaluation of wall motion and dynamic geometry of the IVC using intravascular ultrasound: implications for future design, J Endovasc Ther 15:349, 2008.

    PubMed  Google Scholar 

  82. Balko A, Piasecki GJ, Shah DM et al.: Trans-femoral placement of intraluminal polyurethane prosthesis for abdominal aortic aneurysm, J Surg Res 40:305–309, 1986.

    PubMed  CAS  Google Scholar 

  83. Parodi JC, Palmaz JC, Barone HD: Transfemoral intraluminal graft implantation for abdominal aortic aneurysms, Ann Vasc Surg 5:491–499, 1991.

    PubMed  CAS  Google Scholar 

  84. Chuter TAM, Green RM, Ouriel K et al.: Transfemoral endovascular aortic graft placement, J Vasc Surg 18:185–197, 1993.

    PubMed  CAS  Google Scholar 

  85. Moore WS, Rutherford RB: Transluminal endovascular repair of abdominal aortic aneurysm: results of the North American EVT phase I trial, J Vasc Surg 23:543–553, 1996.

    PubMed  CAS  Google Scholar 

  86. White RA, Fogarty TJ, Kopchok GE et al.: Evaluation of a modular endovascular bifurcation prosthesis in a canine aortic aneurysm model, J Vasc Surg 24:1034–1042, 1996.

    PubMed  CAS  Google Scholar 

  87. Cragg AH, Dake MD: Percutaneous femoropopliteal graft placement, Radiology 187:643–646, 1993.

    PubMed  CAS  Google Scholar 

  88. Marin ML, Veith FJ, Sanchez LA et al.: Endovascular aortoiliac grafts in combination with standard infrainguinal arterial bypasses in the management of limb-threatening ischemia: preliminary report, J Vasc Surg 22:316–325, 1995.

    Google Scholar 

  89. Turner RJ, Hoffman HL, Weinberg SL: Knitted Dacron double velour grafts. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp. 509–522.

    Google Scholar 

  90. Gonza ER, Marble AE, Shaw A, Holland JG: Age related changes in mechanics of the aorta and pulmonary artery in man, J Appl Physiol 36:407, 1974.

    Google Scholar 

  91. Kinley CE, Marble AE: Compliance: a continuing problem with vascular grafts, J Cardiovasc Surg 21:163–170, 1980.

    CAS  Google Scholar 

  92. Walden R, L’Italien GJ, Megerman J, Abbott WM: Matched elastic properties and successful arterial grafting, Arch Surg 115:1166–1169, 1980.

    PubMed  CAS  Google Scholar 

  93. Snyder RW, Botzko KM: Woven, knitted and externally supported Dacron vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp. 485–494.

    Google Scholar 

  94. Diethrich EB: Initial experience with in vivo expansion of PTFE in the treatment of occlusive and aneurysmal disease [abstract], J Endovasc Surg 2:308–309, 1995.

    Google Scholar 

  95. Bergeron P, Henric A, Bonnet C, Reim R: Tensile characteristics of expanded PTFE for use in endoluminal grafting [abstract], J Endovasc Surg 2:302–303, 1995.

    Google Scholar 

  96. Palmaz JC, Tio FO, Laborde JC et al.: Use of stents covered with PTFE in experimental abdominal aortic aneurysm, J Vasc Intervent Radiol 6:879–885, 1995.

    CAS  Google Scholar 

  97. Wesolowski SA, Fries CC, Karlson KE et al.: Porosity, primary determinant of ultimate fate of synthetic grafts, Surgery 50:91–101, 1961.

    PubMed  CAS  Google Scholar 

  98. Ottinger LW, Darling RC, Werthlin LS et al.: Failure of ultra light weight knitted Dacron grafts in arterial reconstruction, Arch Surg 111:146–149, 1976.

    PubMed  CAS  Google Scholar 

  99. Szilagyi E, Pfeifer JR, DeRusso FJ: Long-term evaluation of plastic arterial substitutes: an experimental study, Surgery 55:165–183, 1964.

    PubMed  CAS  Google Scholar 

  100. Golden MA, Hanson SR, Kirkman TR et al.: Healing of PTFE arterial grafts is influenced by graft porosity, J Vasc Surg 11:838–845, 1990.

    PubMed  CAS  Google Scholar 

  101. Kohler TR, Stratton JR, Kirkman TR et al.: Conventional versus high-porosity PTFE grafts: clinical evaluation, Surgery 112:901–907, 1992.

    PubMed  CAS  Google Scholar 

  102. Lindenauer SM, Weber TR, Miller TA et al.: Velour vascular prostheses, Trans Am Soc Artif Intern Organs 20:314–319, 1974.

    Google Scholar 

  103. Claggett PC: In vivo evaluation of platelet reactivity with vascular prostheses. In Stanley JC, editor: Biologic and synthetic vascular prostheses, Orlando, 1982, Grune & Stratton, pp. 131–152.

    Google Scholar 

  104. Ohki T, Marin ML, Veith FJ et al.: Anastomotic intimal hyperplasia: a comparison between conventional and endovascular stent graft techniques, J Surg Res 69:255–267, 1997.

    PubMed  CAS  Google Scholar 

  105. Ombrellaro MP, Stevens SL, Freeman MB, Goldman MH: Reendothelialization and platelet derived growth factor activity associated with intraarterial stented grafts, Vasc Surg 31:631–637, 1997.

    Google Scholar 

  106. Marin ML, Veith FJ, Cynamon J et al.: Human transluminally placed endovascular stented grafts: preliminary histopathologic analysis of healing grafts in aortoiliac and femoral artery occlusive disease, J Vasc Surg 21:595–604, 1995.

    PubMed  CAS  Google Scholar 

  107. White RA, Donayre CE, deVirgilio C et al.: Deployment technique and histopathological evaluation of an endoluminal vascular prosthesis used to repair an iliac artery aneurysm, J Endovasc Surg 3:262–269, 1996.

    PubMed  CAS  Google Scholar 

  108. McGahan TJ, Barry GA, McGahan SL et al.: Results of autopsy 7 months after successful endoluminal treatment of an infrarenal abdominal aortic aneurysm, J Endovasc Surg 2:348–355, 1995.

    PubMed  CAS  Google Scholar 

  109. Hayoz D, Do-Dai D, Mahler F et al.: Aortic inflammatory reaction associated with endoluminal bypass grafts, J Endovasc Surg 4:354–360, 1997.

    PubMed  CAS  Google Scholar 

  110. Norgren L, Swartbol P: Biological responses to endovascular treatment of abdominal aortic aneurysms, J Endovasc Surg 4:169–173, 1997.

    PubMed  CAS  Google Scholar 

  111. Parent FN, Godziachvili V, Meier GH et al.: Endograft limb occlusion and stenosis after Ancure endovascular AAA repair, J Vasc Surg 35:686, 2002.

    PubMed  Google Scholar 

  112. Matsumura JS, Ryu RK, Ouriel K: Identification and implication of transgraft microleaks after EVAR, J Vasc Surg 34:190, 2001.

    PubMed  CAS  Google Scholar 

  113. Peterson BG, Matsumura JS, Brewster DC et al.: Five-year report of a multicenter controlled clinical trial of open versus endovascular treatment of AAA, J Vasc Surg 45:885, 2007.

    Google Scholar 

  114. Tanski W, Fillinger M: Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular AAA repair, J Vasc Surg 45:243, 2007.

    PubMed  Google Scholar 

  115. Makaroun MS, Dillavou ED, Wheatley GH et al.: Five-year results of endovascular treatment with Gore TAG device compared with open repair of thoracic aortic aneurysms, J Vasc Surg 47:912, 2008.

    PubMed  Google Scholar 

  116. Jacobs TS, Won J, Gravereaux EC et al.: Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent-graft devices, J Vasc Surg 37:16, 2003.

    PubMed  Google Scholar 

  117. Beebe HG, Cronenwett JL, Katzen BT et al.: Results of an aortic endograft trial: impact of device failure beyond 12 months, J Vasc Surg 33:S55, 2001.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Back, M.R. (2010). Biomaterials: Considerations for Endovascular Devices. In: Fogarty, T., White, R. (eds) Peripheral Endovascular Interventions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1387-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1387-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1386-9

  • Online ISBN: 978-1-4419-1387-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics