Secret Communication over Fading Channels

  • B. Azimi-Sadjadi
  • A. Kiayias
  • A. Mercado
  • B. Yener


The broadcast nature of any wireless communication network provides a natural eavesdropping and intervention capability to an adversary. Anyone with a tuned receiver within a radius that permits adequate signal to interference and noise ratio (SINR) may eavesdrop. Thus, effecting efficient key generation and renewal algorithms to ensure confidentiality, integrity, and authentication for every wireless link is essential for impenetrability.


Wireless Sensor Network Fading Channel Receive Signal Strength Indicator Signal Envelope Time Division Duplex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camtepe SA, Yener B (2004) Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks. In: Samarati et al (ed) Computer Security-ESORICS, Springer-Verlag, LNCS 3193Google Scholar
  2. 2.
    Bennett CH, Brassard G, Robert, J-M: Privacy Amplification by Public Discussion. SIAM J. Comput. 17(2): pp. 210–229, 1988.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dodis Y, Ostrovsky R, Reyzin L, Smith A (2006) Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: The Computing Research Repository (CoRR), abs/cs/0602007Google Scholar
  4. 4.
    Dodis Y, Ostrovsky R, Reyzin L, Smith A (2007) Fuzzy Extractors. In: Security with Noisy Data, SpringerGoogle Scholar
  5. 5.
    Holenstein T, Renner R (2005) One-Way Secret-Key Agreement and Applications to Circuit Polarization and Immunization of Public-Key Encryption Advances in Cryptology. In: CRYPTO, Lecture Notes in Computer Science, Springer-VerlagGoogle Scholar
  6. 6.
    Shaltiel R (2004) Recent developments in extractors. In: Paun G, Rozenberg G, Salomaa A (ed) Current trends in theoretical computer science. The Challenge of the New Century, Vol 1: Algorithms and Complexity, World ScientificGoogle Scholar
  7. 7.
    Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329Google Scholar
  8. 8.
    Kamerman A, Aben G (2000) Net Throughput with IEEE 802.11 Wireless LANs. IEEE Wireless Communications and Networking Conference, vol(2): 747–752Google Scholar
  9. 9.
    Xiao Y, Rosdahl J (2002) Throughput and Delay Limits of IEEE 802.11. IEEE Communications Letters, vol(6), no(8): 355–357CrossRefGoogle Scholar
  10. 10.
    Nuaymi L, Bouida N, Lahbil N, Godlewski P (2007) Headers Overhead Estimation, Header Suppression and Header Compression in Wimax. IEEE Conference on Wireelss and Mobile Computing, Networking, and Communications: 17–23Google Scholar
  11. 11.
    Diffie W, Hellman M (1976) New directions in cryptography. IEEE Transactions on Information Theory 22: 644–654.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hata M (1980) Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Trans. Vehicular Technology, VT-29: 317–325Google Scholar
  13. 13.
    Aumann Y, Ding Y Z, Rabin M O (2002) Everlasting security in the bounded storage model. IEEE Transactions on Information Theory 48(6): 1668–1680MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Aono T, Higuchi K, Ohira T, Komiyama B, Sasaoka H (2005) Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Transactions on Antennas and Propagation, vol(53), no(11): 3776–3784CrossRefGoogle Scholar
  15. 15.
    Blom R (1984) An optimal class of symmetric key generation systems. EUROCRYPT: 335–338Google Scholar
  16. 16.
    Blundo C, De Santis A, Herzberg A, Kutten S, Vaccaro U, Yung M (1992) Perfectlysecure key distribution for dynamic conferences. Advances in Cryptology:471–486Google Scholar
  17. 17.
    Bodtmann WF, Arnold HW (1982) Fade-Duration Statistics of a Rayleigh Distributed Wave. IEEE Transactions on Communications, vol(COM-30), no(3): 549–553CrossRefGoogle Scholar
  18. 18.
    Cachin C, Maurer UM (1997) Unconditional Security Against Memory-Bounded Adversaries. CRYPTO: 292–306Google Scholar
  19. 19.
    Camtepe SA, Yener B (2005) Key Distribution Mechanisms for Wireless Sensor Networks: a Survey. TR-05–07 Rensselaer Polytechnic Institute, Computer Science DepartmentGoogle Scholar
  20. 20.
    Camtepe SA, Yener B (2007) Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks. ACM/IEEE Transactions on Networking, in pressGoogle Scholar
  21. 21.
    Camtepe SA, Yener B, Yung M (2006) Expander graph based key distribution mechanisms in wireless sensor networks. IEEE Int. Conf. on CommunicationsGoogle Scholar
  22. 22.
    Carter L, Wegman M (1979) Universal Hash Functions. J. Comp. and Syst. Sci. 18(2):143–154MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Chan H, Perrig A, Song D (2003) Random Key Predistribution Schemes for Sensor Networks. IEEE Symp. Security and Privacy: 197Google Scholar
  24. 24.
    Csisz ár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 22(6):644–654Google Scholar
  25. 25.
    Datta A, Derek A, Mitchell JC, Warinschi B (2006) Computationally Sound Compositional Logic for Key Exchange Protocols. CSFW 2006:321–334Google Scholar
  26. 26.
    Dodis Y, Reyzin L, Smith A (2004) Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. Advances in Cryptology EUROCRYPT 2004Google Scholar
  27. 27.
    Dodis Y (2005) On Extractors, Error-Correction and Hiding All Partial Information. Information Theory Workshop (ITW 2005)Google Scholar
  28. 28.
    Dutertre B, Cheung S, Levy J (2004) Lightweight Key Management in Wireless Sensor Networks by Leveraging Initial Trust. System Design Laboratory, Technical Report, SRI-SDL-04–02Google Scholar
  29. 29.
    Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks. ACM Conf. Computer and Commun. Security: 41–47Google Scholar
  30. 30.
    Hershey JE, Hassan AA, Yarlagadda R (1995) Unconventional Cryptographic Keying Variable Management. IEEE Transaction on Communications, vol(43), no(1):3–6MATHCrossRefGoogle Scholar
  31. 31.
    Howe DG, Hilden H, Weldon Jr E (1994) Shift correction code system for correcting additive errors and synchronization slips. United States Patent 5373513, 12/13/1994.Google Scholar
  32. 32.
    Maurer U (1993) Secret key agreement by public discussion. IEEE Transaction on Information Theory, 39(3):733–742MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Maurer U, Wolf S (1999) Unconditionally secure key agreement and the intrinsic conditional information. IEEE Transactions on Information Theory, 45(2):499–514MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Naor M, Yung M (1989) Universal One-Way Hash Functions and their Cryptographic Applications. Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing:33–43Google Scholar
  35. 35.
    Karpijoki V (2000) Security in Ad Hoc Networks. Helsinki University of Technology, Tik-110.501 Seminar on Network Security, Telecommunications Software and Multimedia LaboratoryGoogle Scholar
  36. 36.
    Kitaura A, Sasaoka H (2005) A Scheme of Private Key Agreement Based on the Channel Characteristics in OFDM Land Mobile Radio. Electronics and Communications in Japan, Part 3 (Fundamental Electronic Science), vol(88), no(9):1–10CrossRefGoogle Scholar
  37. 37.
    Lai B, Kim S, Verbauwhede I (2002) Scalable session key construction protocol for wireless sensor networks. IEEE Workshop on Large Scale Real-Time and Embedded SystemsGoogle Scholar
  38. 38.
    Li X, Chen M, Ratazzi EP (2005) Array-Transmission Based Physical-Layer Security Techniques For Wireless Sensor Networks. Proceedings of the IEEE International Conference on Mechatronics and Automation:1618–1623Google Scholar
  39. 39.
    Ohira T (2005) Secret Key Generation Exploiting Antenna Beam Steering and Wave Propagation Reciprocity. 2005 European Microwave Conference, vol(1):9–12CrossRefGoogle Scholar
  40. 40.
    Santha M, Vazirani UV (1986) Generating quasi-random sequences from semi-random sources. Journal of Computer and System Sciences, vol(33):75–87MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Gabizon A, Raz R, Shaltiel R (2004) Deterministic extractors for bit-fixing sources by obtaining an independent seed. FOCS 2004Google Scholar
  42. 42.
    Impagliazzo R, Levin LA, Luby M (1989) Pseudo-random generation from one-way functions. Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC ’89):12–24Google Scholar
  43. 43.
    Stanica P (2001) Good Lower and Uppwer Bounds on Binomial Coefficients, Journal of Inequalities in Pure and Applied Mathematics, vol(2), Issue 3, Article 30Google Scholar
  44. 44.
    Stinson D (2002) Universal hash families and the leftover hash lemma, and applications to cryptography and computing. J. Combin. Math. Combin. Comput. vol(42):3–31MATHMathSciNetGoogle Scholar
  45. 45.
    Wyner AD (1975) The wire-tap channel. Bel l Systems Technical Journal, 54:1355–1387MathSciNetGoogle Scholar
  46. 46.
    Steele R. (1992) Mobile Radio Communications. IEEE PressGoogle Scholar
  47. 47.
    Proakis J. (1995) Digital Communications. McGraw-HillGoogle Scholar
  48. 48.
    Naguib A (1996) Adaptive Antennas for CDMA Wireless Networks. PhD thesis, Stanford UniversityGoogle Scholar
  49. 49.
    van Lint JH (1998) Introduction to Coding Theory. SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Azimi-Sadjadi
    • 1
  • A. Kiayias
    • 2
  • A. Mercado
    • 3
  • B. Yener
    • 4
  1. 1.Intelligent Automation, Inc.Rockville MDUSA
  2. 2.Department of Computer and Electrical EngineeringUniversity of ConnecticutStorrs, CTUSA
  3. 3.ADG, Hughes Network SystemsGermantown MDUSA
  4. 4.Department of Computer ScienceRensselaer Polytechnic InstituteTroy, NYUSA

Personalised recommendations