Cardiovascular Disease and Neurocognitive Function

  • Shari R. Waldstein
  • Carrington Rice Wendell
  • Megan M. Hosey
  • Stephen L. Seliger
  • Leslie I. Katzel
Chapter

Abstract

Cardiovascular (CV) diseases confer substantial increase in risk for ischemic and hemorrhagic stroke. Yet, outside the context of clinical stroke, the brain is an under-recognized target organ of a spectrum of CV diseases. Although it has long been known that CV risk factors and diseases contribute to the development of vascular dementia, we now know that similar risk is conferred for Alzheimer’s disease. Importantly, long before clinical manifestations of stroke or dementia are apparent, CV risk factors and diseases negatively impact the brain and neurocognitive function. We suggest that there is a continuum of neurocognitive and neurobiological impairment associated with increasingly severe manifestations of CV disease across the life span. Here we provide a broad overview of current knowledge pertaining to the relation of CV risk factors and diseases to dementia, neurocognitive function, and the brain.

Keywords

Placebo Fatigue Depression Ischemia Estrogen 

Notes

Acknowledgment

Preparation of this chapter was supported, in part, by NIH grant 2RO1 AG015112 to SRW.

References

  1. 1.
    Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y. Heart disease and stroke statistics 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117: e25–146.PubMedCrossRefGoogle Scholar
  2. 2.
    Allender S, Scarborough P, Peto V, Rayner M, Leal J, Luengo-Fernandez R, Gray A. European cardiovascular disease statistics. 3rd ed. Brussels: A European Heart Network; 2008.Google Scholar
  3. 3.
    Neaton JD, Wentworth DN, Cutler J, Stamler J, Kuller L. Risk factors for death from different types of stroke. Multiple Risk Factor Intervention Trial Research Group. Ann Epidemiol. 1993;3:493–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Meyer JS, Rauch GM, Rauch RA, Anwarul H, Crawford K. Cardiovascular and other risk factors for Alzheimer’s disease and vascular dementia. Ann NY Acad Sci. 2000;903:411–23.PubMedCrossRefGoogle Scholar
  5. 5.
    de la Torre JC. Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 2004;3:184–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Roman G. Diagnosis of vascular dementia and Alzheimer’s disease. Int J Clin Pract Suppl. 2001;9–13.Google Scholar
  7. 7.
    White L, Launer L. Relevance of cardiovascular risk factors and ischemic cerebrovascular disease to the pathogenesis of Alzheimer disease: a review of accrued findings from the Honolulu-Asia Aging Study. Alzheimer Dis Assoc Disord 2006;20:S79–83.Google Scholar
  8. 8.
    Roman GC. Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci. 2002;203–204:7–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Roman GC. Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis. 2005;20(Suppl 2):91–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosano C, Newman AB. Cardiovascular disease and risk of Alzheimer’s disease. Neurol Res. 2006;28:612–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosendorff C, Beeri MS, Silverman JM. Cardiovascular risk factors for Alzheimer’s disease. Am J Geriatr Cardiol. 2007;16:143–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J Intern Med. 2006;260:211–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Hachinski V. Vascular dementia: a radical redefinition. Dementia. 1994;5:130–2.PubMedGoogle Scholar
  14. 14.
    Waldstein SR, Tankard CF, Maier KJ, Pelletier JR, Snow J, Gardner AW, Macko R, Katzel LI. Peripheral arterial disease and cognitive function. Psychosom Med. 2003;65:757–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Waldstein SR. Health effects on cognitive aging. In: Stern PC, Carstensen LL, editors. The aging mind: opportunities in cognitive research. Committee on future directions for cognitive research on aging. Commission on behavioral and social sciences and education. Washington, DC: National Academy Press; 2000. pp. 189–217.Google Scholar
  16. 16.
    World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision Version for 2007. WHO and DMDI 2007 http://www.who.int/classifications/apps/icd/icd10online/
  17. 17.
    Cupples LA, D’Agostino RB. Section 34: some risk factors related to the annual incidence of cardiovascular disease and death in pooled repeated biennial measurements. In: Kannel WB, Wolf PA, Garrison RJ, editors. Framingham Heart Study: 30 year follow-up. Bethesda, MD: US Department of Health and Human Services;1987.Google Scholar
  18. 18.
    Chobanian AV, Bakris GL, Cushman WC, Green LA, Izzo JLJR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National Heart, Lung and Blood Institute: National High Blood Pressure Education Program Coordinating Committee. Hypertension. 2003;42:1206–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Newman AB, Naydeck BL, Sutton-Tyrrell K, Edmundowicz D, O’Leary D, Kronmal R, Burke GL, Kuller LH. Relationship between coronary artery calcification and other measures of subclinical cardiovascular disease in older adults. Arterioscler Thromb Vasc Biol. 2002;22:1674.PubMedCrossRefGoogle Scholar
  20. 20.
    Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol. 2002;155:487–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Twamley WE, Legendre Ropacki SA, Bondi MW. Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. J Int Neuropsychol Soc. 2006;12:707–35.PubMedCrossRefGoogle Scholar
  23. 23.
    de la Torre JC. Cerebrovascular gene linked to Alzheimer’s disease pathology. Trends Mol Med. 2005;11:534–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Franco OH, Peeters A, Bonneux L, de Laet C. Blood pressure in adulthood and life expectancy with cardiovascular disease in men and women: life course analysis. Hypertension. 2005;46:280–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Moser M, Setaro JF. Resistant or difficult-to-control hypertension. NEJM. 2006;355:385–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Staessen JA, Richart T, Birkenhager WH. Less atherosclerosis and lower blood pressure for a meaningful life perspective with more brain. Hypertension. 2007;49:389–400.PubMedCrossRefGoogle Scholar
  27. 27.
    Skoog I, Gustafson D. Update on hypertension and Alzheimer’s disease. Neurol Res. 2006;28:605–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Launer LJ, Ross GW, Petrovitch H, et al. Midlife blood pressure and dementia: the Honolulu–Asia aging study. Neurobiol Aging. 2000;21:49–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Waldstein SR, Katzel LI. Hypertension and cognitive function. In: Waldstein SR, Elias MF, eds. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum, 2001: 15–36.Google Scholar
  31. 31.
    Waldstein SR, Manuck SB, Ryan CM, Muldoon MF. Neuropsychological correlates of hypertension: review and methodologic considerations. Psychol Bull. 1991;110:451–68.PubMedCrossRefGoogle Scholar
  32. 32.
    Lande MB, Kaczorowski JM, Auinger P, Schwartz GJ, Weitzman M. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143:699–700.CrossRefGoogle Scholar
  33. 33.
    Elias MF, Wolf PA, D‘Agostino RB, Cobb J, White LR. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol. 1993;138:353–64.PubMedGoogle Scholar
  34. 34.
    Harrington F, Saxby BK, McKeith IG, Wesnes K, Ford GA. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36:1079–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008;51:99–104.PubMedCrossRefGoogle Scholar
  36. 36.
    Glynn RJ, Beckett LA, Hebert LE, Morris MC, Scherr PA, Evans DA. Current and remote blood pressure and cognitive decline. J Am Med Assoc. 1999;281: 438–45.CrossRefGoogle Scholar
  37. 37.
    Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension. 2005;45:374–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Tzourio C, Dufouil C, Ducimetiere P, Alperovitch A. Cognitive decline in individuals with high blood pressure. Neurology. 1999;53:1948–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Elias MF, Robbins MA, Elias PK, Streeten DHP. A longitudinal study of blood pressure in relation to performance on the Wechsler Adult Intelligence Scale. Health Psychol. 1998;17:486–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu–Asia Aging Study. JAMA. 1995;274:1846–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Waldstein SR, Jennings JR, Ryan CM, et al. Hypertension and neuropsychological performance in men: interactive effects of age. Health Psychol 1996;15:102–9.Google Scholar
  42. 42.
    Elias MF, Robbins MA, Schultz NR, Streeten DH, Elias PK. Clinical significance of cognitive performance by hypertensive patients. Hypertension. 1987;9:192–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Waldstein SR, Katzel LI. Gender differences in the relation of hypertension to cognitive function in older adults. Neurol Res. 2004;26:502–06.PubMedCrossRefGoogle Scholar
  44. 44.
    Pelia R, White LR, Petrovitch H, Masaki K, Ross GW, Havlik RJ, Launer LJ. Joint effect of the APOE gene and midlife systolic blood pressure on late-life cognitive impairment: the Honolulu Aging Study. Stroke. 2001;32:2882–9.CrossRefGoogle Scholar
  45. 45.
    Kang JH, Logroscino G, De Vivo I, Hunter D, Grodstein F. Apolipoprotein E, cardiovascular disease and cognitive function in aging women. Neurobiol Aging. 2005;26: 475–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Kuusisto J, Koivisto K, Mykkanen L, et al. Essential hypertension and cognitive function: the role of hyperinsulinemia. Hypertension. 1993;22:771–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Waldstein SR, Katzel LI. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obesity. 2006;30:201–07.CrossRefGoogle Scholar
  48. 48.
    Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Lower cognitive function in the presence of obesity and hypertension: the Framingham Heart study. Int J Obes Relat Metab Disord. 2003;27:260–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Waldstein SR, Brown JRP, Maier K, Katzel LI. Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Ann Behav Med. 2005;29:174–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Brady CB, Spiro A 3rd, Gaziano JM. Effects of age and hypertension status on cognition: the Veterans Affairs Normative Aging Study. Neuropsychology. 2005;19:770–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7:476–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Murray MD, Lane KA, Gao S, Evans RM, Unverzagt FW, Hall KS, Hendrie H. Preservation of cognitive function with anithypertensive medications. Arch Intern Med. 2002;162:2090–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Jonas DL, Blumenthal JA, Madden DJ, Serra M. Cognitive consequences of antihypertensive medications. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 167–88.Google Scholar
  54. 54.
    Birns J, Morris R, Donaldson N, Kalra L. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens. 2006;24:1907–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Muldoon MF, Waldstein SR, Ryan CM, Jennings JR, Polefrone JM, Shapiro AP, Manuck SB. Effects of six antihypertensive medications on cognitive performance. J Hypertens. 2002;20:1643–52.PubMedCrossRefGoogle Scholar
  56. 56.
    National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.Google Scholar
  57. 57.
    Grodstein F. Cardiovascular risk factors and cognitive function. Alzheimers Dement. 2007;3:S16–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Reitz C, Tang MX, Luchsinger J, Mayeux R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol. 2004;61:705–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Dufouil C, Richard F, Fievet N, et al. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology. 2005;64:1531–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Tan ZS, Seshadri S, Beiser A, et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med. 2003;163: 1053–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Kalmijn S, Foley D, White L, et al. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu–Asia aging study. Arterioscler Thromb Vasc Biol. 2000;20:2255–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Kivipelto M, Ngandu T, Fratiglioni L, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62:1556–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Anstey KJ, Lipnicki DM, Low LF. Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry. 2008;16:343–54.PubMedGoogle Scholar
  64. 64.
    Muldoon MF, Flory JD, Ryan CM. Serum cholesterol, the brain and cognition. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 37–59.Google Scholar
  65. 65.
    Elias PK, Elias MF, D’Agostino RB, Sullivan LM, Wolf PA. Serum cholesterol and cognitive performance in the Framingham Heart Study. Psychosom Med. 2005;67: 24–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Atzmon G, Gabriely I, Greiner W, Schechter C, Barzilai N. Plasma HDL levels highly correlate with cognitive function in exceptional longevity. J Gerontol A Biol Sci Med Sci. 2002;57:M712–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Soloman A, Kareholt I, Ngandu T, et al. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year-follow-up study. Neurology. 2007;68:751–6.CrossRefGoogle Scholar
  68. 68.
    Yaffe K, Barrett-Connor E, Lin F, Grady D. Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol. 2002;59:378–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Swan GE, LaRue A, Carmelli D, et al. Decline in cognitive performance in aging twins: heritability and biobehavioral predictors from the National Heart, Lung, and Blood Institute Twin Study. Arch Neurol 1992;49:476–81.Google Scholar
  70. 70.
    Kojro E, Gimpl G, Lammich S, et al. Low cholesterol stimulates the nonamylogenic pathway by its effect on the alpha-secretase Alzheimer’s Disease AM 10. Proc Natl Acad Sci USA. 2001;98:5814–20.CrossRefGoogle Scholar
  71. 71.
    Szwast SJ, Hendrie HC, Lane KA, Gao S, Taylor SE, Unverzagt F, et al. Association of statin use with cog nitive decline in elderly African Americans. Neurology. 2007;69:1873–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Xiong GL, Benson A, Doraiswamy PM. Statins and cognition: what can we learn from existing randomized trials. CNS Spectr. 2005;867–74.Google Scholar
  73. 73.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Després J-P, Lemieux I. Prud’homme D. Treatment of obesity: need to focus on high risk abdominal obesity patients. BMJ. 2001;322:716–20.PubMedCrossRefGoogle Scholar
  75. 75.
    Calle ED, Thun MJ, Petrelli JM, Rodriguez C, Heath CW. Body-mass index and mortality in a prospective cohort of US adults. N Engl J Med. 1999;341:1097–105.PubMedCrossRefGoogle Scholar
  76. 76.
    Wilson PW, Bozeman SR, Burton TM, Hoaglin DC, Ben-Joseph R, Pashos CL. Prediction of first events of coronary heart disease and stroke with consideration of adiposity. Circulation. 2008;118:124–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Gustafson D. Adiposity indices and dementia. Lancet Neurol. 2006;5:713–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Whitmer RA. The epidemiology of adiposity and dementia. Curr Alzheimer Res. 2007;4:117–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Barrett-Connor E. An introduction to obesity and dementia. Curr Alzheimer Res. 2007;4:97–101.PubMedCrossRefGoogle Scholar
  80. 80.
    Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008; epub, ahead of print.Google Scholar
  81. 81.
    Cserjései R, Molnár D, Luminet O, Lénárd L. Is there any relationship between obesity and mental flexibility in children? Appetite. 2007;49:675–8.CrossRefGoogle Scholar
  82. 82.
    Gunstad J, Paul RH, Cohen RA, Tate DF, Gordon E. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord. 2006;11:e15–9.PubMedGoogle Scholar
  83. 83.
    Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry. 2007;57–61.Google Scholar
  84. 84.
    Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S. Relation of obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res. 2007;4:111–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Dore GA, Elias MF, Robbins MA, Budge MM, Elias PK. Relation between central adiposity and cognitive function in the Maine-Syracuse Study: attenuation by physical activity. Ann Behav Med. 2008;35:341–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Kuo HK, Jones RN, Milberg WP, Tennstedt S, Talbot L, Morris JN, Lipsitz LA. Cognitive function in normal-weight, overweight, and obese older adults: an analysis of the Advanced Cognitive Training for Independent and Vital Elderly Cohort. J Am Geriatr Soc. 2005;54:97–103.CrossRefGoogle Scholar
  87. 87.
    Sakakura K, Hoshide S, Ishikawa J, et al. Association of body mass index with cognitive function in elderly hypertensive Japanese. Am J Hypertens. 2008;21:627–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Sturman MT, de Leon CF, Bienias JL, Morris MC, Wilson RS, Evans DA. Body mass index and cognitive decline in a biracial community population. Neurology. 2008;70: 360–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Jagust W. What can imaging reveal about obesity and the brain? Curr Alzheimer Res. 2007;4:135–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. The effect of body mass index on global brain volume in middle aged adults: a cross sectional study. BMC Neurol. 2005;5:23.PubMedCrossRefGoogle Scholar
  91. 91.
    Gazdzinski S, Kornak J, Weiner MW, Meyerhoff DJ. Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol. 2008;63:652–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Bjorntorp P, Rosmond R. Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord 2000;24 Suppl:S80–S85.Google Scholar
  93. 93.
    Ren J. Leptin and hyperleptinemia – from friend to foe for cardiovascular function. J Endocrinol 2004;18:1–10.CrossRefGoogle Scholar
  94. 94.
    Sweat V, Starr V, Bruehl H, Arentoft A, Tirsi A, Javier E, Convit A. C-reactive protein is linked to lower cognitive performance in overweight and obese women. Inflammation. 2008;31:198–207.PubMedCrossRefGoogle Scholar
  95. 95.
    American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  96. 96.
    Cechetto DF, Hachinski V, Whitehead SN. Vascular risk factors and Alzheimer’s disease. Expert Rev Neurother. 2008;8:743–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Messier C, Awad N, Gagnon M. The relationships between atherosclerosis, heart disease, type 2 diabetes and dementia. Neurol Res. 2004;26:567–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes – systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Ryan CM. Diabetes associated cognitive dysfunction. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 61–82.Google Scholar
  100. 100.
    Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 2008;7:184–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev. 2008;29:494–511.PubMedCrossRefGoogle Scholar
  102. 102.
    Diabetes C. Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Long-term effect of diabetes and its treatment on cognitive function. Curr Diab Rep. 2008;356: 1842–52.Google Scholar
  103. 103.
    Elias PK, Elias MF, D’Agostino RB, Cupples LA, Wilson PW, Silbershatz H, Wolf PA. NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care. 1997;20:1388–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Taylor VH, MacQueen GM. Cognitive dysfunction associated with metabolic syndrome. Obes Rev. 2007;8:409–18.PubMedCrossRefGoogle Scholar
  105. 105.
    Rolandsson O, Backerström A, Eriksson S, Hallmans G, Nilsson LG. Increased glucose levels are associated with episodic memory in nondiabetic women. Diabetes. 2008;57:440–3.PubMedCrossRefGoogle Scholar
  106. 106.
    Stolk RP, Breteler MM, Ott A, Pols HA, Lamberts SW, Grobbee DE, Hofman A. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care. 1997;20:792–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Young SE, Mainous AG 3rd, Carnemolla M. Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care. 2006;29:2688–93.PubMedCrossRefGoogle Scholar
  108. 108.
    Huber JD. Diabetes, cognitive function, and the blood-brain barrier. Curr Pharm Des. 2008;14: 1594–600.PubMedCrossRefGoogle Scholar
  109. 109.
    Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes. 2004;53:687–92.PubMedCrossRefGoogle Scholar
  110. 110.
    Zethelius B, Berglund L, Sundström J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlöv J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–16.PubMedCrossRefGoogle Scholar
  111. 111.
    Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006;35:2615–7.CrossRefGoogle Scholar
  112. 112.
    Ridker PM, Wilson PWF, Grundy SM. Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? Circulation. 2004;109: 2818–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Schmidt R, Schmidt H, Curb JD, et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu–Asia Aging Study. Ann Neurol. 2002;52:168–74.PubMedCrossRefGoogle Scholar
  114. 114.
    Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle aged adults. Biol Psychiatry. 2008; epub ahead of print.Google Scholar
  115. 115.
    Rafnsson SB, Deary IJ, Smith FB, et al. Cognitive decline and markers of inflammation and hemostasis: the Edinburgh Artery Study. J Am Geriatr Soc. 2007;55: 700–07.PubMedCrossRefGoogle Scholar
  116. 116.
    Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology. 2003;61:76–80.PubMedCrossRefGoogle Scholar
  117. 117.
    Weaver JD, Huang MH, Albert M, et al. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Jordanova V, Stewart R, Davies E, et al. Markers of inflammation and cognitive decline in an African-Caribbean population. Int J Geriatr Psychiatry. 2007;22:966–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. J Am Med Assoc. 2004;292:2237–42.CrossRefGoogle Scholar
  120. 120.
    Schram MT, Euser SM, de Craen AJM, et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc. 2007;55:708–16.PubMedCrossRefGoogle Scholar
  121. 121.
    Fornage M, Chiang YA, O‘Meara ES, et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the Cardiovascular Health Study. Stroke. 2008;39:1952–9.PubMedCrossRefGoogle Scholar
  122. 122.
    van Dijk EJ, Prins ND, Vermeer SE, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation. 2005;112:900–05.PubMedCrossRefGoogle Scholar
  123. 123.
    Wada M, Nagasawa H, Kurita K, et al. Cerebral small vessel disease and C-reactive protein: results of a cross-sectional study in community-based Japanese elderly. J Neurol Sci. 2008;264:43.PubMedCrossRefGoogle Scholar
  124. 124.
    Schmidt R, Schmidt H, Pichler M, et al. C-reactive protein, carotid atherosclerosis, and cerebral small-vessel disease: results of the Austrian Stroke Prevention Study. Stroke. 2006;37:2910–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Marcus DL, Thomas C, Rodriguez C, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150:40.PubMedCrossRefGoogle Scholar
  126. 126.
    Berr C, Balansard B, Arnaud J, et al. Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Arteriel. J Am Geriatr Soc. 2000;48:1285–91.PubMedGoogle Scholar
  127. 127.
    Shibata H, Nabika T, Moriyama H, et al. Correlation of NO metabolites and 8-iso-prostaglandin F2a with periventricular hyperintensity severity. Arterioscler Thromb Vasc Biol. 2004;24:1659–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Grodstein F, Kang JH, Glynn RJ, et al. A randomized trial of beta carotene supplementation and cognitive function in men: the Physicians’ Health Study II. Arch Intern Med. 2007;167:2184–90.PubMedCrossRefGoogle Scholar
  129. 129.
    Kang JH, Cook N, Manson J, et al. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med. 2006;166:2462–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. J Am Med Assoc. 2007;298:2038–47.CrossRefGoogle Scholar
  131. 131.
    Sehgal AR, Grey SF, DeOreo PB, et al. Prevalence, recognition, and implications of mental impairment among hemodialysis patients. Am J Kidney Dis. 1997;30:41–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Murray AM, Tupper DE, Knopman DS, et al. Cognitive impairment in hemodialysis patients is common. Neurology. 2006;67:216–23.PubMedCrossRefGoogle Scholar
  133. 133.
    Elias MF, Elias PK, Seliger SL, et al. Chronic kidney disease, creatinine, and cognitive functioning. Nephrol Dial Transplant 2009;24:24461–52.Google Scholar
  134. 134.
    Kurella M, Chertow GM, Fried LF, et al. Chronic kidney disease and cognitive impairment in the elderly: the Health, Aging, and Body Composition Study. J Am Soc Nephrol. 2005;16:2127–33.PubMedCrossRefGoogle Scholar
  135. 135.
    Yaffe K, Lindquist K, Shlipak MG, et al. Cystatin C as a marker of cognitive function in elders: findings from the health ABC study. Ann Neurol. 2008;63:798–802.PubMedCrossRefGoogle Scholar
  136. 136.
    Hailpern SM, Melamed ML, Cohen HW, et al. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: Third National Health and Nutrition Examination Survey (NHANES III). J Am Soc Nephrol. 2007;18:2205–13.PubMedCrossRefGoogle Scholar
  137. 137.
    Kurella M, Yaffe K, Shlipak MG, Wenger NK, Chertow GM. Chronic kidney disease and cognitive impairment in menopausal women. Am J Kidney Dis. 2005;45:66–76.PubMedCrossRefGoogle Scholar
  138. 138.
    Seliger SL, Siscovick DS, Stehman-Breen CO, et al. Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study. J Am Soc Nephrol. 2004;15:1904–11.PubMedCrossRefGoogle Scholar
  139. 139.
    Barzilay JI, Fitzpatrick AL, Luchsinger J, et al. Albuminuria and dementia in the elderly: a community study. Am J Kidney Dis. 2008;52:216–26.PubMedCrossRefGoogle Scholar
  140. 140.
    Elias MF, Sullivan LM, D‘Agostino RB, et al. Homocysteine and cognitive performance in the Framingham Offspring Study: age is important. Am J Epidemiol. 2005;162:644–53.PubMedCrossRefGoogle Scholar
  141. 141.
    Wright CB, Lee HS, Paik MC, et al. Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology. 2004;63:254–60.PubMedCrossRefGoogle Scholar
  142. 142.
    Kado DM, Karlamangla AS, Huang M-H, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med. 2005;118:161.PubMedCrossRefGoogle Scholar
  143. 143.
    Haan MN, Miller JW, Aiello AE, et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2007;85:511–7.PubMedGoogle Scholar
  144. 144.
    Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.PubMedCrossRefGoogle Scholar
  145. 145.
    Ravaglia G, Forti P, Maioli F, et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr. 2005;82:636–43.PubMedGoogle Scholar
  146. 146.
    McMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM. A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med. 2006;354:2764–72.PubMedCrossRefGoogle Scholar
  147. 147.
    Durga J, van Boxtel MP, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369:208–16.PubMedCrossRefGoogle Scholar
  148. 148.
    Gorelick PB. Cerebrovascular disease in African Americans. Stroke. 1998;29:2656–64.PubMedCrossRefGoogle Scholar
  149. 149.
    Letenneur L, Larrieu S, Barberger-Gateau P. Alcohol and tobacco consumption as risk factors of dementia: a review of epidemiologic studies. Biomed Pharmacother. 2004;58:95–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Antsey KJ, Lipnicki DM, Low LF. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.CrossRefGoogle Scholar
  151. 151.
    Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev. 2007;17:259–73.PubMedCrossRefGoogle Scholar
  152. 152.
    Galanis DJ, Petrovitch H, Launer LJ, Harris TB, Foley DJ, White LR. Smoking history in middle age and subsequent cognitive performance in elderly Japanese–American men. The Honolulu–Asia Aging Study. Am J Epidemiol. 1997;145:507–15.PubMedCrossRefGoogle Scholar
  153. 153.
    White L, Launer L. Relevance of cardiovascular risk factors and ischemic cerebrovascular disease to the pathogenesis of Alzheimer disease: a review of accrued findings from the Honolulu–Asia Aging Study. Alzheimer Dis Assoc Disord. 2006;20:S79–83.PubMedCrossRefGoogle Scholar
  154. 154.
    Oscar-Berman M, Marinkovic K. Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev. 2007;17:239–57.PubMedCrossRefGoogle Scholar
  155. 155.
    Reynolds K, Lewis B, Nolen JD, Kinney GL, Sathya B, He J. Alcohol consumption and risk of stroke: a meta-analysis. J Am Med Assoc. 2003;289:579–88.CrossRefGoogle Scholar
  156. 156.
    Lang I, Wallace RB, Huppert FA, Melzer D. Moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence. Age Ageing. 2007;36:256–61.PubMedCrossRefGoogle Scholar
  157. 157.
    Ngandu T, Helkala EL, Soininen H, et al. Alcohol drinking and cognitive functions: findings from the Cardiovascular Risk Factors Aging and Dementia (CAIDE) Study. Dement Geriatr Cogn Disord. 2007;23:140–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Elias PK, Elias MF, D’Agostino RB, Silbershatz H, Wolf PA. Alcohol consumption and cognitive performance in the Framingham Heart Study. Am J Epidemiol. 1999;150:580–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Dufouil C, Ducimetiere P, Alperovitch A. Sex differences in the association between alcohol consumption and cognitive performance. EVA Study Group: Epidemiology of Vascular Aging. Am J Epidemiol. 1997;146:405–12.PubMedCrossRefGoogle Scholar
  160. 160.
    Galanis DJ, Joseph C, Masaki KH, Petrovitch H, Ross GW, White L. A longitudinal study of drinking and cognitive performance in elderly Japanese American men: the Honolulu–Asia Aging Study. Am J Public Health. 2000;90:1254–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Frank B, Gupta S. A review of antioxidants and Alzheimer’s disease. Ann Clin Psychiatry. 2005;17:269–86.PubMedCrossRefGoogle Scholar
  162. 162.
    Wengreen HJ, Munger RG, Corcoran CD, Zandi P, Hayden KM, Fotuhi M, Skoog I, Norton MC, Tschanz J, Breitner JC, Welsh-Bohmer KA. Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging. 2007;11:230–7.PubMedGoogle Scholar
  163. 163.
    Del Parigi A, Panza F, Capurso C, Solfrizzi V. Nutritional factors, cognitive decline, and dementia. Brain Res Bull. 2006;69:1–19.PubMedCrossRefGoogle Scholar
  164. 164.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology. 2004;62:1573–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Conklin SM, Gianaros PJ, Brown SM, et al. Long-chain omega-3 fatty acid intake is associated positively with corticolimbic gray matter volume in health adults. Neurosci Lett. 2007;421:209–12.PubMedCrossRefGoogle Scholar
  166. 166.
    Rovio S, Kareholt I, Helkala EL, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4:705–11.PubMedCrossRefGoogle Scholar
  167. 167.
    Dishman RK, Berthoud HR, Booth FW, et al. Neurobiology of exercise. Obesity. 2006;14:345–56.PubMedCrossRefGoogle Scholar
  168. 168.
    Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. PNAS. 2004;3316–21.Google Scholar
  169. 169.
    Colcombe SJ, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;125–30.Google Scholar
  170. 170.
    Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99:2192–217.PubMedCrossRefGoogle Scholar
  171. 171.
    Kubzansky LD, Davidson KW, Rozanski A. The clinical impact of negative psychological states: expanding the spectrum of risk for coronary artery disease. Psychosom Med. 2005;67:S10–4.PubMedCrossRefGoogle Scholar
  172. 172.
    Everson SA, Roberts RE, Goldberg DE, Kaplan GA. Depressive symptoms and increased risk of stroke mortality over a 29-year period. Arch Intern Med. 1998;158:1133–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Everson SA, Kaplan GA, Goldberg DE, Lakka TA, Sivenius J, Salonen JT. Anger expression and incident stroke: prospective evidence from the Kuopio ischemic heart disease study. Stroke. 1999;30: 523–8.PubMedCrossRefGoogle Scholar
  174. 174.
    McCaffery JM, Frasure-Smith N, Dube MP, et al. Common genetic vulnerability to depressive symptoms and coronary artery disease: a review and development of candidate genes related to inflammation an serotonin. Psychosom Med. 2006;68:187–200.PubMedCrossRefGoogle Scholar
  175. 175.
    Leonard BE. Inflammation, depression and dementia: are they connected? Neurochem Res. 2007;32:1749–56.PubMedCrossRefGoogle Scholar
  176. 176.
    Bellelli G, Pezzinin A, Bianchetti A, Trabucchi M. Increased blood pressure variability may be associated with cognitive decline in hypertensive elderly subjects with no dementia. Arch Intern Med. 2002;162:483–4.PubMedCrossRefGoogle Scholar
  177. 177.
    Kanemaru A, Kanemaru K, Kuwajima I. The effects of short-term blood pressure variability and nighttime blood pressure levels on cognitive function. Hypertens Res. 2001;24:19–24.PubMedCrossRefGoogle Scholar
  178. 178.
    Waldstein SR, Katzel LI. Stress-induced blood pressure reactivity and cognitive function. Neurology. 2005;64:1750–5.CrossRefGoogle Scholar
  179. 179.
    Brown JRP, Zonderman AB, Sollers JJ, Thayer JF, Waldstein SR. Blood pressure reactivity and cognitive function in the Baltimore Longitudinal Study of Aging. Health Psychol 2009;28:641–6.Google Scholar
  180. 180.
    Manuck SB, Kasprowicz AL, Monroe SM, Larkin KT, Kaplan JR. Psychophysiologic reactivity as a dimension of individual differences. In Schneiderman N, Weiss SM, Kaufmann PG, editors. Handbook of research methods in cardiovascular behavioral medicine. New York, NY: Plenum; 1989. pp. 365–82.Google Scholar
  181. 181.
    Everson SA, Lynch JW, Kaplan GA, Lakka TA, Sivenius J, Salonen J. Stress-induced blood pressure reactivity and incident stroke in middle-aged men. Stroke. 2001;32:1263–70.PubMedCrossRefGoogle Scholar
  182. 182.
    Kamarck TW, Everson SA, Kaplan GA, Manuck SB, Jennings JR, Salonen JT. Exaggerated blood pressure responses during mental stress are associated with enhanced carotid atherosclerosis in middle-aged Finnish men. Findings from the Kuopio Ischemic Heart Disease Study. Circulation. 1997;96:3842–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Waldstein SR, Siegel EL, Lefkowitz D, et al. Stress-induced blood pressure reactivity and silent cerebrovascular disease. Stroke. 2004;35:1294–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Kario K, Matsuo T, Kobayashi H, Imiya M, Matsuo M, Shimada K. Relation between nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensives: advanced silent cerebrovascular damage in extreme dippers. Hypertension. 1996;27:130–5.PubMedCrossRefGoogle Scholar
  185. 185.
    Goldstein IB, Bartzokis G, Hance DB, Shapiro D. Relationship between blood pressure and subcortical lesions in healthy elderly people. Stroke. 1998;29:765–72.PubMedCrossRefGoogle Scholar
  186. 186.
    Kario K, Eguchi K, Hoshide S, et al. U-curve relationship between orthostatic blood pressure change and silent cerebrovascular disease in elderly hypertensives. J Am Coll Cardiol. 2002;40:133–41.PubMedCrossRefGoogle Scholar
  187. 187.
    Lupien SJ, Schwartz G, Ng YK, et al. The Douglas hospital longitudinal study of normal and pathological aging: summary of findings. J Psychiatry Neurosci. 2005;30: 328–34.PubMedGoogle Scholar
  188. 188.
    Li G, Cherrier MM, Tsuang DW, et al. Salivary cortisol and memory function in human aging. Neurobiol Aging. 2006;27:1705–14.PubMedCrossRefGoogle Scholar
  189. 189.
    Wright CE, Kunz-Ebrecht SR, Iliffe S, Foese O, Steptoe A. Physiological correlates of cognitive functioning in an elderly population. Psychoneuroendocrinology. 2005;30:826–38.PubMedCrossRefGoogle Scholar
  190. 190.
    Kirschbaum C, Wolf OT, May M, Wippich W, Helhammer DH. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58:1475–83.PubMedCrossRefGoogle Scholar
  191. 191.
    Sapolsky RM. Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol. 1999;34:721–32.PubMedCrossRefGoogle Scholar
  192. 192.
    McEwen BS. Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging. 2002;23:921–39.PubMedCrossRefGoogle Scholar
  193. 193.
    Sherwin BB. Steroid hormones and cognitive functioning in aging men: a mini-review. J Mol Neurosci. 2003;20:385–93.PubMedCrossRefGoogle Scholar
  194. 194.
    Sherwin BB. Estrogen and cognitive aging in women. Neuroscience. 2006;138:1021–6.PubMedCrossRefGoogle Scholar
  195. 195.
    de la Torre JC. How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res. 2006;28:637–44.PubMedCrossRefGoogle Scholar
  196. 196.
    Bergmann C, Sano M. Cardiac risk factors and potential treatments in Alzheimer’s disease. Neurol Res. 2006;28:595–604.PubMedCrossRefGoogle Scholar
  197. 197.
    Korczyn AD, Vakhapova V. The prevention of the dementia epidemic. J Neurol Sci 2007;257:2–4.PubMedCrossRefGoogle Scholar
  198. 198.
    Elias MF, Sullivan LM, D’Agostino RB, et al. Framingham stroke risk profile and lowered cognitive performance. Stroke. 2004;35:404–09.PubMedCrossRefGoogle Scholar
  199. 199.
    Mead GE, Keir S. Association between cognitive impairment and atrial fibrillation: a systematic review. J Stroke Cerebrovasc Dis. 2001;10:35–43.PubMedCrossRefGoogle Scholar
  200. 200.
    Vingerhoets G. Cognitive consequences of myocardial infarction, cardiac arrhythmias, and cardiac arrest. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 143–63.Google Scholar
  201. 201.
    Knecht S, Oelschlager C, Duning T, et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur Heart J Epub. 2008 Jul;29.Google Scholar
  202. 202.
    Lim C, Alexander MP, LaFleche G, Schnyer DM, Verfaellie M. The neurological and cognitive sequelae of cardiac arrest. Neurology. 2004;63:1774–8.PubMedCrossRefGoogle Scholar
  203. 203.
    van Alem AP, Waalewijn RA, Koster RW, de Vos R. Assessment of quality of life and cognitive function after out-of-hospital cardiac arrest with successful resuscitation. Am J Cardiol. 2004;93:131–5.PubMedCrossRefGoogle Scholar
  204. 204.
    Caine D, Watson JD. Neuropsychological and neuropathological sequelae of cerebral anoxia: a critical review. J Int Neuropsychol Soc. 2000;6:86–99.PubMedCrossRefGoogle Scholar
  205. 205.
    Devereux RB, Alderman MH. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation. 1993;88:1444–55.PubMedCrossRefGoogle Scholar
  206. 206.
    Poredos P. Intima–media thickness: indicator of cardiovascular risk and measure of the extent of atherosclerosis. Vasc Med. 2004;9:46–54.PubMedCrossRefGoogle Scholar
  207. 207.
    Simon A, Levenson J. May subclinical arterial disease help to better detect and treat high-risk asymptomatic individuals? J Hypertens. 2005;23:1939–45.PubMedCrossRefGoogle Scholar
  208. 208.
    Chaves PH, Kuller LH, O‘Leary DH, Manolio TA, Newman AB. Subclinical cardiovascular disease in older adults: insights from the Cardiovascular Health Study. Am J Geriatr Cardiol. 2004;13:137–51.PubMedCrossRefGoogle Scholar
  209. 209.
    Shechter M, Issachar A, Marai I, et al. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol Epub 2008 May 12.Google Scholar
  210. 210.
    Laurent S, Boutouyrie P. Arterial stiffness: a new surrogate end point for cardiovascular disease? J Nephrol. 2007;20:S45–50.PubMedGoogle Scholar
  211. 211.
    O‘Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med. 1999;340:14–22.PubMedCrossRefGoogle Scholar
  212. 212.
    Napoli C, Palinski W. Neurodegenerative diseases: insights into pathogenic mechanisms from atherosclerosis. Neurobiol Aging. 2005;26:293–302.PubMedCrossRefGoogle Scholar
  213. 213.
    Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet. 1997;349:151–4.PubMedCrossRefGoogle Scholar
  214. 214.
    Grobbee DE, Bots ML. Carotid artery intima–media thickness as an indicator of generalized atherosclerosis. J Intern Med. 1994;236:567–73.PubMedCrossRefGoogle Scholar
  215. 215.
    Salonen JT, Salonen R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb. 1991;11:1245–9.PubMedCrossRefGoogle Scholar
  216. 216.
    Wong M, Edelstein J, Wollman J, Bond MG. Ultrasonic-pathological comparison of the human arterial wall. Verification of intima–media thickness. Arterioscler Thromb. 1993;13:482–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Breteler MM, Claus JJ, Grobbee DE, Hofman A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. Br Med J. 1994;308:1604–08.CrossRefGoogle Scholar
  218. 218.
    Auperin A, Berr C, Bonithon-Kopp C, et al. Ultrasonographic assessment of carotid wall characteristics and cognitive functions in a community sample of 59- to 71-year-olds. Stroke. 1996;27:1290–5.PubMedCrossRefGoogle Scholar
  219. 219.
    Cerhan JR, Folsom AR, Mortimer JA, et al. Correlates of cognitive function in middle-aged adults. Gerontology. 1998;44:95–105.PubMedCrossRefGoogle Scholar
  220. 220.
    Claus JJ, Breteler MM, Hasan D, et al. Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging. 1998;19:57–64.PubMedCrossRefGoogle Scholar
  221. 221.
    Kaplan GA, Everson SA, Koivisto K, Salonen R, Salonen JT. Cognitive function and carotid atherosclerosis in Eastern Finnish men. Ann Behav Med. 1996;18:S47.Google Scholar
  222. 222.
    Mathiesen EB, Waterloo K, Joakimsen O, Bakke SJ, Jacobsen EA, Bonaa KH. Reduced neuropsychological test performance in asymptomatic carotid stenosis: the Tromso Study. Neurology. 2004;62:695–701.PubMedCrossRefGoogle Scholar
  223. 223.
    Muller M, Grobbee DE, Aleman A, Bots M, van der Schouw YT. Cardiovascular disease and cognitive performance in middle-aged and elderly men. Atherosclerosis. 2007;190:143–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Singh-Manoux A, Britton A, Kivimaki M, Gueguen A, Halcox J, Marmot M. Socioeconomic status moderates the association between carotid intima–media thickness and cognition in midlife: evidence from the Whitehall II study. Atherosclerosis. 2008;197:541–8.PubMedCrossRefGoogle Scholar
  225. 225.
    Haley AP, Forman DE, Poppas A, et al. Carotid artery intima–media thickness and cognition in cardiovascular disease. Int J Cardiol. 2007;121:148–54.PubMedCrossRefGoogle Scholar
  226. 226.
    Cohen RA, Poppas A, Forman DE, et al. Vascular and cognitive functions associated with cardiovascular disease in the elderly. J Clin Exp Neuropsychol. 2008;1–15.Google Scholar
  227. 227.
    Smith PJ, Blumenthal JA, Babyak MA, et al. Cerebrovascular risk factors, vascular disease, and neuropsychological outcomes in adults with major depression. Psychosom Med. 2007;69:578–86.PubMedCrossRefGoogle Scholar
  228. 228.
    Yaldizli O, Kastrup O, Obermann M, et al. Carotid intima–media thickness in HIV-infected individuals: relationship of premature atherosclerosis to neuropsychological deficits? Eur Neurol. 2006;55:166–71.PubMedCrossRefGoogle Scholar
  229. 229.
    Haan MN, Shemanski L, Jagust WJ, Manolio TA, Kuller L. The role of APOE epsilon4 in modulating effects of other risk factors for cognitive decline in elderly persons. J Am Med Assoc. 1999;282:40–6.CrossRefGoogle Scholar
  230. 230.
    Johnston SC, O‘Meara ES, Manolio TA, et al. Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann Intern Med. 2004;140:237–47.PubMedGoogle Scholar
  231. 231.
    Komulainen P, Kivipelto M, Lakka TA, et al. Carotid intima–media thickness and cognitive function in elderly women: a population-based study. Neuroepidemiology. 2007;28:207–13.PubMedCrossRefGoogle Scholar
  232. 232.
    Knopman D, Boland LL, Mosley T, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Wendell CR, Zonderman AB, Metter EJ, Najjar SS, Waldstein SR. Carotid intimal-medial thickness predicts cognitive decline among adults without clinical vascular disease. Stroke 2009;40:3180–5.Google Scholar
  234. 234.
    Lee YH, Yeh SJ. Correlation of common carotid artery intima media thickness, intracranial arterial stenosis and post-stroke cognitive impairment. Acta Neurologica Taiwanica. 2007;16:207–13.PubMedGoogle Scholar
  235. 235.
    Silvestrini M, Gobbi B, Pasqualetti P, et al. Carotid atherosclerosis and cognitive decline in patients with Alzheimer’s disease. Neurobiol Aging Epub 2007 Dec 10.Google Scholar
  236. 236.
    Talelli P, Ellul J, Terzis G, et al. Common carotid artery intima media thickness and post-stroke cognitive impairment. J Neurol Sci. 2004;223:129–34.PubMedCrossRefGoogle Scholar
  237. 237.
    de Simone G, Roman MJ, Alderman MH, Galderisi M, de Divitiis O, Devereux RB. Is high pulse pressure a marker of preclinical cardiovascular disease? Hypertension. 2005;45:575–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.PubMedCrossRefGoogle Scholar
  239. 239.
    Qiu C, Winblad B, Viitanen M, Fratiglioni L. Pulse pressure and risk of Alzheimer disease in persons aged 75 years and older: a community-based, longitudinal study. Stroke. 2003;34:594–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Robbins MA, Elias MF, Elias PK, Budge MM. Blood pressure and cognitive function in an African-American and a Caucasian-American sample: the Maine-Syracuse Study. Psychosom Med. 2005;67:707–14.PubMedCrossRefGoogle Scholar
  241. 241.
    Obisesan TO, Obisesan OA, Martins S, et al. High blood pressure, hypertension, and high pulse pressure are associated with poorer cognitive function in persons aged 60 and older: the Third National Health and Nutrition Examination Survey. J Am Geriatr Soc. 2008;56:501–09.PubMedCrossRefGoogle Scholar
  242. 242.
    Hanon O, Haulon S, Lenoir H, et al. Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss. Stroke. 2005;36:2193–7.PubMedCrossRefGoogle Scholar
  243. 243.
    Scuteri A, Brancati AM, Gianni W, Assisi A, Volpe M. Arterial stiffness is an independent risk factor for cognitive impairment in the elderly: a Pilot Study. J Hypertens. 2005;23:1211–6.PubMedCrossRefGoogle Scholar
  244. 244.
    Nagai K, Akishita M, Machida A, Sonohara K, Ohni M, Toba K. Correlation between pulse wave velocity and cognitive function in nonvascular dementia. J Am Geriatr Soc. 2004;52:1037–8.PubMedCrossRefGoogle Scholar
  245. 245.
    Scuteri A, Tesauro M, Appolloni S, Preziosi F, Brancati AM, Volpe M. Arterial stiffness as an independent predictor of longitudinal changes in cognitive function in the older individual. J Hypertens. 2007;25:1035–40.PubMedCrossRefGoogle Scholar
  246. 246.
    Poels MM, van Oijen M, Mattace-Raso FU, et al. Arterial stiffness, cognitive decline, and risk of dementia: the Rotterdam Study. Stroke. 2007;38:888–92.PubMedCrossRefGoogle Scholar
  247. 247.
    Lane HA, Smith JC, Davies JS. Noninvasive assessment of preclinical atherosclerosis. Vasc Health Risk Manag. 2006;2:19–30.PubMedCrossRefGoogle Scholar
  248. 248.
    Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.PubMedCrossRefGoogle Scholar
  249. 249.
    Desmond DW. The neuropsychology of vascular cognitive impairment: is there a specific cognitive deficit? J Neurol Sci. 2004;226:3–7.PubMedCrossRefGoogle Scholar
  250. 250.
    O‘Brien JT. Vascular cognitive impairment. Am J Geriatr Psychiatry. 2006;14:724–33.PubMedCrossRefGoogle Scholar
  251. 251.
    Hoth KF, Tate DF, Poppas A, et al. Endothelial function and white matter hyperintensities in older adults with cardiovascular disease. Stroke. 2007;38:308–12.PubMedCrossRefGoogle Scholar
  252. 252.
    Elias MF, Sullivan LM, Elias PK, et al. Left ventricular mass, blood pressure, and lowered cognitive performance in the Framingham offspring. Hypertension. 2007;49:439–45.PubMedCrossRefGoogle Scholar
  253. 253.
    Kahonen-Vare M, Brunni-Hakala S, Lindroos M, Pitkala K, Strandberg T, Tilvis R. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin Exp Res. 2004;16:147–52.PubMedGoogle Scholar
  254. 254.
    Folsom AR, Szklo M, Stevens J, Liao F, Smith R, Eckfeldt JH. A prospective study of coronary heart disease in relation to fasting insulin, glucose, and diabetes. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 1997;20:935–42.PubMedCrossRefGoogle Scholar
  255. 255.
    van Exel E, de Craen AJ, Remarque EJ, et al. Interaction of atherosclerosis and inflammation in elderly subjects with poor cognitive function. Neurology. 2003;61:1695–701.PubMedCrossRefGoogle Scholar
  256. 256.
    Elias MF, Elias PK, Robbins MA, Wolf PA, D‘Agostino RB. Cardiovascular risk factors and cognitive functioning: an epidemiological perspective. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 83–104.Google Scholar
  257. 257.
    Scuteri A, Najjar SS, Muller DC, et al. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol. 2004;43: 1388–95.PubMedCrossRefGoogle Scholar
  258. 258.
    Vingerhoets G, Van Nooten G, Jannes C. Neuropsychological impairment in candidates for cardiac surgery. J Int Neuropsychol Soc. 1997;3:480–4.PubMedGoogle Scholar
  259. 259.
    Barclay LL, Weiss EM, Mattis S, Bond O, Blass JP. Unrecognized cognitive impairment in cardiac rehabilitation patients. J Am Geriatr Soc. 1988;36:22–8.PubMedGoogle Scholar
  260. 260.
    Hogue CW Jr, Hershey T, Dixon D, et al. Preexisting cognitive impairment in women before cardiac surgery and its relationship with C-reactive protein concentrations. Anesth Analg. 2006;102:1602–08.PubMedCrossRefGoogle Scholar
  261. 261.
    Singh-Manoux A, Britton AR, Marmot M. Vascular disease and cognitive function: evidence from the Whitehall II Study. J Am Geriatr Soc. 2003;51:1445–50.PubMedCrossRefGoogle Scholar
  262. 262.
    Elwood PC, Pickering J, Bayer A, Gallacher JE. Vascular disease and cognitive function in older men in the Caerphilly cohort. Age Ageing. 2002;31:43–8.PubMedCrossRefGoogle Scholar
  263. 263.
    Almeida OP, Garrido GJ, Beer C, et al. Coronary heart disease is associated with regional grey matter volume loss: implications for cognitive function and behavior. Intern Med J. 2008;38:599–606.PubMedCrossRefGoogle Scholar
  264. 264.
    Breteler MM, van Swieten JC, Bots ML, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology. 1994;44:1246–52.PubMedCrossRefGoogle Scholar
  265. 265.
    Newman S, Stygall J, Kong R. Neuropsychological consequences of coronary artery bypass surgery. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 189–218.Google Scholar
  266. 266.
    Scarborough JE, White W, Derilus FE, Mathew JP, Newman MF, Landolfo KP. Neurologic outcomes after coronary artery bypass grafting with and without cardiopulmonary bypass. Semin Thorac Cardiovasc Surg. 2003;15:52–62.PubMedCrossRefGoogle Scholar
  267. 267.
    Gottesman RF, Wityk RJ. Brain injury from cardiac bypass procedures. Semin Neurol. 2006;26:432–9.PubMedCrossRefGoogle Scholar
  268. 268.
    Hawkes AL, Nowak M, Bidstrup B, Speare R. Outcomes of coronary artery bypass graft surgery. Vasc Health Risk Manag. 2006;2:477–84.PubMedCrossRefGoogle Scholar
  269. 269.
    Selnes OA, McKhann GM. Neurocognitive complications after coronary artery bypass surgery. Ann Neurol. 2005;57:615–21.PubMedCrossRefGoogle Scholar
  270. 270.
    Selnes OA, McKhann GM, Borowicz LM Jr., Grega MA. Cognitive and neurobehavioral dysfunction after cardiac bypass procedures. Neurol Clin. 2006;24:133–45.PubMedCrossRefGoogle Scholar
  271. 271.
    Aklog L. Neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;345:543–4.PubMedCrossRefGoogle Scholar
  272. 272.
    Mack MJ, Magee MJ, Dewey TM. Neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;345:543.PubMedCrossRefGoogle Scholar
  273. 273.
    Taggart DP, Browne SM, Halligan PW. Neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;345:544–5.PubMedGoogle Scholar
  274. 274.
    Wilner AP. Neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;345:544.PubMedGoogle Scholar
  275. 275.
    Malphurs JE, Roscoe LA. Neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;345:544.PubMedGoogle Scholar
  276. 276.
    Selnes OA, McKhann GM. Coronary-artery bypass surgery and the brain. N Engl J Med. 2001;344:451–2.PubMedCrossRefGoogle Scholar
  277. 277.
    Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.PubMedCrossRefGoogle Scholar
  278. 278.
    Royter V, Bornstein NM, Russell D. Coronary artery bypass grafting (CABG) and cognitive decline: a review. J Neurol Sci. 2005;229–230:65–7.PubMedCrossRefGoogle Scholar
  279. 279.
    Symes E, Maruff P, Ajani A, Currie J. Issues associated with the identification of cognitive change following coronary artery bypass grafting. Aust N Z J Psychiatry. 2000;34:770–84.PubMedCrossRefGoogle Scholar
  280. 280.
    Blumenthal JA, Mahanna EP, Madden DJ, White WD, Croughwell ND, Newman MF. Methodological issues in the assessment of neuropsychologic function after cardiac surgery. Ann Thorac Surg. 1995;59:1345–50.PubMedCrossRefGoogle Scholar
  281. 281.
    Gardner FV, Worwood EV. Psychological effects of cardiac surgery: a review of the literature. J R Soc Health. 1997;117:245–9.PubMedCrossRefGoogle Scholar
  282. 282.
    Selnes OA, Royall RM, Grega MA, Borowicz LM Jr., Quaskey S, McKhann GM. Cognitive changes 5 years after coronary artery bypass grafting: is there evidence of late decline? Arch Neurol. 2001;58:598–604.PubMedCrossRefGoogle Scholar
  283. 283.
    Hlatky MA, Bacon C, Boothroyd D, et al. Cognitive function 5 years after randomization to coronary angioplasty or coronary artery bypass graft surgery. Circulation. 1997;96:II-11–14.Google Scholar
  284. 284.
    Mullges W, Babin-Ebell J, Reents W, Toyka KV. Cognitive performance after coronary artery bypass grafting: a Follow-Up Study. Neurology. 2002;59:741–3.PubMedCrossRefGoogle Scholar
  285. 285.
    Potter GG, Plassman BL, Helms MJ, Steffens DC, Welsh-Bohmer KA. Age effects of coronary artery bypass graft on cognitive status change among elderly male twins. Neurology. 2004;63:2245–9.PubMedCrossRefGoogle Scholar
  286. 286.
    Stygall J, Newman SP, Fitzgerald G, et al. Cognitive change 5 years after coronary artery bypass surgery. Health Psychol. 2003;22:579–86.PubMedCrossRefGoogle Scholar
  287. 287.
    Haddock CK, Poston WS, Taylor JE. Neurocognitive sequelae following coronary artery bypass graft. A research agenda for behavioral scientists. Behav Modif. 2003;27:68–82.PubMedCrossRefGoogle Scholar
  288. 288.
    Taggart DP, Westaby S. Neurological and cognitive disorders after coronary artery bypass grafting. Curr Opin Cardiol. 2001;16:271–6.PubMedCrossRefGoogle Scholar
  289. 289.
    Reichenberg A, Dahlman KL, Mosovich S, Silverstein JH. Neuropsychiatric consequences of coronary artery bypass grafting and noncardiovascular surgery. Dialogues Clin Neurosci. 2007;9:85–91.PubMedGoogle Scholar
  290. 290.
    Weitz JI, Byrne J, Clagett P, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.PubMedCrossRefGoogle Scholar
  291. 291.
    Kannel WB. Risk factors for atherosclerotic cardiovascular outcomes in different arterial territories. J Cardiovasc Risk. 1994;1:333–9.PubMedCrossRefGoogle Scholar
  292. 292.
    Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–6.PubMedCrossRefGoogle Scholar
  293. 293.
    Sutton KC, Wolfson SK, Kuller LH. Carotid and lower extremity arterial disease in elderly adults with isolated systolic hypertension. Stroke. 1987;18:817–22.PubMedCrossRefGoogle Scholar
  294. 294.
    Bots ML, Hofman A, Grobbee DE. Common carotid intima–media thickness and lower extremity arterial atherosclerosis. The Rotterdam Study. Arterioscler Thromb. 1994;14:1885–91.PubMedCrossRefGoogle Scholar
  295. 295.
    Phillips NA. Thinking on your feet: a neuropsychological review of peripheral vascular disease. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 121–42.Google Scholar
  296. 296.
    Shaw PJ, Bates D, Cartlidge NEF, et al. Neurologic and neuropsychological morbidity following major surgery: comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700–07.PubMedCrossRefGoogle Scholar
  297. 297.
    Hemmingsen R, Mejsholm B, Vorstrup S, Lester J, Engell HC, Boysen G. Carotid surgery, cognitive function, and cerebral blood flow in patients with transient ischemic attacks. Ann Neurol. 1986;20:13–19.PubMedCrossRefGoogle Scholar
  298. 298.
    Kelly MP, Garron DC, Javid H. Carotid artery disease, carotid endarterectomy and behavior. Arch Neurol. 1980;37:743–8.PubMedCrossRefGoogle Scholar
  299. 299.
    Phillips NA, Mate-Kole CC. Cognitive deficits in peripheral vascular disease. A comparison of mild stroke patients and normal control subjects. Stroke. 1997;28:777–84.PubMedCrossRefGoogle Scholar
  300. 300.
    Amar K, Lewis T, Wilcock G, Scott M, Bucks R. The relationship between white matter low attenuation on brain CT and vascular risk factors: a memory clinic study. Aging Ageing. 1995;24:411–5.Google Scholar
  301. 301.
    Bots ML, van Swieten JC, Breteler MM, et al. Cerebral white matter lesions and atherosclerosis in the Rotterdam Study. Lancet. 1993;341:1232–7.PubMedCrossRefGoogle Scholar
  302. 302.
    Rich MW. Heart failure in the 21st century: a cardiogeriatric syndrome. J Gerontol A Biol Sci Med Sci. 2001;56:M88–96.PubMedCrossRefGoogle Scholar
  303. 303.
    Vogels RL, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail. 2007;9:440–9.PubMedCrossRefGoogle Scholar
  304. 304.
    Radovancevic B, Frazier OH. Surgical therapies for heart failure. Curr Opin Cardiol. 2000;15:161–5.PubMedCrossRefGoogle Scholar
  305. 305.
    Almeida OP, Flicker L. The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J. 2001;31:290–5.PubMedCrossRefGoogle Scholar
  306. 306.
    Heckman GA, Patterson CJ, Demers C, St Onge J, Turpie ID, McKelvie RS. Heart failure and cognitive impairment: challenges and opportunities. Clin Interv Aging. 2007;2:209–18.PubMedGoogle Scholar
  307. 307.
    Pressler SJ. Cognitive functioning and chronic heart failure: a review of the literature (2002-July 2007). J Cardiovasc Nurs. 2008;23:239–49.PubMedGoogle Scholar
  308. 308.
    Bornstein RA. Neuropsychological function before and after transplantation. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Erlbaum; 2001. pp. 219–28.Google Scholar
  309. 309.
    Vogels RL, Oosterman JM, van Harten B, et al. Profile of cognitive impairment in chronic heart failure. J Am Geriatr Soc. 2007;55:1764–70.PubMedCrossRefGoogle Scholar
  310. 310.
    Zuccala G, Onder G, Pedone C, et al. Cognitive dysfunction as a major determinant of disability in patients with heart failure: results from a multicentre survey. On behalf of the GIFA (SIGG-ONLUS) Investigators. J Neurol Neurosurg Psychiatry. 2001;70:109–12.PubMedCrossRefGoogle Scholar
  311. 311.
    Zuccala G, Pedone C, Cesari M, et al. The effects of cognitive impairment on mortality among hospitalized patients with heart failure. Am J Med. 2003;115:97–103.PubMedCrossRefGoogle Scholar
  312. 312.
    Bornstein RA, Starling RC, Myerowitz PD, Haas GJ. Neuropsychological function in patients with end-stage heart failure before and after cardiac transplantation. Acta Neurol Scand. 1995;91:260–5.PubMedCrossRefGoogle Scholar
  313. 313.
    Roman DD, Kubo SH, Ormaza S, Francis GS, Bank AJ, Shumway SJ. Memory improvement following cardiac transplantation. J Clin Exp Neuropsychol. 1997;19:692–7.PubMedCrossRefGoogle Scholar
  314. 314.
    Augustine AM, Goldsborough M, McKhann GM, Selnes OA, Baumgartner WA. Neurocognitive deficits pre and one month post transplantation. J Heart Lung Transplant. 1994;13(Suppl):44.Google Scholar
  315. 315.
    Grimm M, Yeganehfar W, Laufer G, et al. Cyclosporine may affect improvement of cognitive brain function after successful cardiac transplantation. Circulation. 1996;94:1339–45.PubMedCrossRefGoogle Scholar
  316. 316.
    Zuccala G, Onder G, Pedone C, et al. Hypotension and cognitive impairment: selective association in patients with heart failure. Neurology. 2001;57:1986–92.PubMedCrossRefGoogle Scholar
  317. 317.
    Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 1992;40:922–35.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shari R. Waldstein
    • 1
    • 2
    • 3
  • Carrington Rice Wendell
    • 1
  • Megan M. Hosey
    • 1
  • Stephen L. Seliger
    • 4
  • Leslie I. Katzel
    • 5
    • 3
  1. 1.Department of PsychologyUniversity of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Division of Gerontology and Geriatric Medicine, Department of Medicine, School of MedicineUniversity of MarylandBaltimoreUSA
  3. 3.Geriatric Research Education and Clinical CenterBaltimore Veterans Affairs Medical CenterBaltimoreUSA
  4. 4.Division of Nephrology, Department of Medicine, School of MedicineUniversity of MarylandBaltimoreUSA
  5. 5.Division of Gerontology, Department of Medicine, School of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations