Skip to main content

Neuropsychological Functioning of Endocrinology Disorders: Gonadotropic Hormones and Corticosteroids

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

The sex hormones and corticosteroids influence neuroelectrophysiology, neuroanatomy, and cognition [1–3] through their interaction with a variety of brain structures, particularly the hippocampus [2, 4]. Normative levels of estrogen and testosterone as well as homeostatic levels of corticosteroids are required for optimal cognitive functioning. The present review will focus on the neuropsychological sequelae of conditions resulting from elevated or insufficient levels of the primary sex hormones and corticosteroids as well as post-treatment neuropsychological response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janowsky JS. Thinking with your gonads: testosterone and cognitive. Trends Cog Sci. 2006;10(2):77–82.

    Article  Google Scholar 

  2. Spencer JL, Waters EM, Romeo RD, et al. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol. 2008;29(2):219–37.

    Article  PubMed  Google Scholar 

  3. Belanoff JK, Gross K, Yager A, Schatzberg AF. Corticosteroids and cognition. J Psychiatr Res. 2001;35:127–45.

    Article  PubMed  Google Scholar 

  4. Verghese J, Kusansky G, Katz MJ, et al. Cognitive performance in surgical menopausal women on estrogen. Neurology. 2000;55:872–4.

    Article  PubMed  Google Scholar 

  5. Brett KM, Madan JH. Use of posthormonal hormone replacement therapy estimates from a nationally representative cohort study. Am J Epidemiol. 1997;145:536–45.

    Article  PubMed  Google Scholar 

  6. Harman SM, Metter EJ, Tobin JD, et al. Longitudinal effects of aging on serum total and free testosterone levels in healthy men: Baltimore Aging Study. J Clin Endocrinol Metab. 2001;86:724–31.

    Article  PubMed  Google Scholar 

  7. Ross J, Roeltgen D, Zinn A. Cognition and the sex chromosomes: studies in Turner Syndrome. Horm Res. 2006;65(1):47–56.

    Article  PubMed  Google Scholar 

  8. Geschwind DH, Boone KB, Miller BL, Swerdloff RS. Neurobehavioral phenotype of Klinefelter syndrome. Ment Retard Dev Disabil Res Rev. 2000;6:107–16.

    Article  PubMed  Google Scholar 

  9. Mandoki MW, Sumner GS, Hoffman RP, Riconda DL. A review of Klinefelter’s syndrome in children and adolescents. J Am Acad Child Adolesc Psychiatry. 1991;30(2):167–72.

    Article  PubMed  Google Scholar 

  10. Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci. 1990;10:1286–91.

    PubMed  Google Scholar 

  11. Adams MM, Shah RA, Janssen WG, Morrison JH. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci USA. 2001;98:8071–6.

    Article  PubMed  Google Scholar 

  12. Hao J, Janssen WG, Tang Y, et al. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J Comp Neurol. 2003;465(4):540–50.

    Article  PubMed  Google Scholar 

  13. Woolley CS, Wentzel HJ, Schwartzkroin PA. Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat. J Comp Neurol. 1996;373:108–17.

    Article  PubMed  Google Scholar 

  14. Cordoba Montoya DA, Carrer HF. Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Res. 1997;778:430–8.

    Article  PubMed  Google Scholar 

  15. Markowska AL, Savonenko AV. Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats. J Neurosci. 2002;22:10985–95.

    PubMed  Google Scholar 

  16. Savonenko AV, Markowska AL. The cognitive effects of ovariectomy and estrogen replacement are modulated by aging. Neuroscience. 2003;19:821–30.

    Article  Google Scholar 

  17. Hogervorst E, Williams J, Budge M, et al. The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. Neuroscience. 2000;101(3):485–512.

    Article  Google Scholar 

  18. Sherwin BB. Estrogen and cognitive aging in women. Neuroscience. 2006;138:1021–6.

    Article  PubMed  Google Scholar 

  19. Kampen DL, Sherwin BB. Estrogen use and verbal memory in healthy postmenopausal women. Obstet Gynecol. 1994;83(6):979–83.

    Article  PubMed  Google Scholar 

  20. Kimura D. Estrogen replacement therapy may protect against intellectual decline in postmenopausal women. Horm Behav. 1995;29(3):312–21.

    Article  PubMed  Google Scholar 

  21. Maki PM, Zonderman AB, Resnick SM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry. 2001;158(2):227–33.

    Article  PubMed  Google Scholar 

  22. Robinson D, Friedman L, Marcus R, et al. Estrogen replacement therapy and memory in older women. J Am Geriatr Soc. 1994;42(9):919–22.

    PubMed  Google Scholar 

  23. Resnick SM, Maki PM, Golski S, et al. Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance. Horm Behav. 1998;34(2):171–82.

    Article  PubMed  Google Scholar 

  24. Schmidt R, Fazekas F, Reinhart B, et al. Estrogen replacement therapy in older women: a neuropsychological and brain MRI study. J Am Gerontol Soc. 1996;44:1307–13.

    Google Scholar 

  25. Hogervorst E, Boshuisen M, Riedel W, et al. The effect of hormone replacement therapy on cognitive function in elderly women. Psychoneuroendocrinology. 1999;24:43–68.

    Article  PubMed  Google Scholar 

  26. Steffans DC, Norton MC, Plassman BL, et al. Enhanced cognitive performance with estrogen use in nondemented community-dwelling older women. J Am Geriatr Soc. 1999;47:1171–5.

    Google Scholar 

  27. Barrett-Connor E, Kritz-Silverstein D. Estrogen replacement therapy and cognitive function in older women. JAMA. 1993;269:2637–41.

    Article  PubMed  Google Scholar 

  28. Grodstein F, Chen J, Pollen DA, et al. Postmenopausal hormone therapy and cognitive function in healthy older women. J Am Gerontol Soc. 2000;48:746–52.

    Google Scholar 

  29. Jacobs DM, Tag M-X, Stern Y, et al. Cognitive function in nondemented older women who took estrogen after menopause. Neurology. 1998;50:368–73.

    Article  PubMed  Google Scholar 

  30. Rice MM, Graves AB, McCurry SM, et al. Postmenopausal estrogen and estrogen–progestin use and 2-year rate of cognitive change in a cohort of older Japanese American women: the Kame project. Arch Intern Med. 2000;160:1641–9.

    Article  PubMed  Google Scholar 

  31. Szklo M, Cerhan J, Diez-Roux AV, et al. Estrogen replacement therapy and cognitive functioning in the artherosclerotic risk in communities (ARIC) study. Am J Epidemiol. 1996;144:1048–57.

    Article  PubMed  Google Scholar 

  32. Resnick SM, Metter EJ, Zonderman AB. Estrogen replacement therapy and longitudinal decline in visual memory. A possible protective effect? Neurology. 1997;49(6):1491–7.

    Article  PubMed  Google Scholar 

  33. Matthews K, Cauley J, Yaffe K, Zmuda J. Estrogen replacement therapy and cognitive decline in older community women. J Am Gerontol Soc. 1999;47:518–23.

    Google Scholar 

  34. Yaffe K, Haan M, Byers A, et al. Estrogen use, ApoE, and cognitive decline. Neurology. 2000;54:1949–53.

    Article  PubMed  Google Scholar 

  35. Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology. 1988;13:345–57.

    Article  PubMed  Google Scholar 

  36. Phillips SM, Sherwin BB. Effects on estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology. 1992;17:485–95.

    Article  PubMed  Google Scholar 

  37. Duka T, Tasker R, McGowan JF. The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females. Psychopharmacology. 2000;149:129–39.

    Article  PubMed  Google Scholar 

  38. Binder EF, Schectman KB, Birge SJ, et al. Effects of hormone replacement therapy on cognitive performance in elderly women. Maturitas. 2001;38:137–46.

    Article  PubMed  Google Scholar 

  39. Ditkoff EC, Crary WG, Cristo M, Lobo RA. Estrogen improves psychological function in asymptomatic postmenopausal women. Obstet Gynecol. 1991;78:459–66.

    Google Scholar 

  40. Goebel JA, Birge SJ, Price SC, et al. Estrogen replacement therapy and postural stability in the elderly. Am J Otol. 1995;16(4):470–4.

    PubMed  Google Scholar 

  41. Janowsky JS, Chavez B, Orwoll E. Sex steroids modify working memory. J Cogn Neurosci. 2000;12(3):407–14.

    Article  PubMed  Google Scholar 

  42. Shaywitz SE, Shaywitz BA, Pugh KR, et al. Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks. JAMA. 1999;281:1197–202.

    Article  PubMed  Google Scholar 

  43. LeBlanc ES, Janowsky J, Chan BKS, Nelson HD. Hormone replacement therapy and cognition: systemic review and meta-analysis. J Am Med Dir Assoc. 2001;285:1489–99.

    Google Scholar 

  44. Hogervorst E, Yaffee K, Richards M, Huppert F. Hormone replacement therapy to maintain cognitive function in women with dementia. Cochrane Database Syst Rev Issue. 2008;3:1–9.

    Google Scholar 

  45. Craig MC, Maki PM, Murphy DGM. The women’s health initiative memory study: findings and implications for treatment. Lancet Neurol. 2005;4:190–4.

    PubMed  Google Scholar 

  46. Maki PM. Hormone Therapy and cognitive function: is there a critical period for benefit? Neuroscience. 2006;138:1027–30.

    Article  PubMed  Google Scholar 

  47. Resnick SM, Coker LH, Maki PM, et al. The Women’s Health Initiative Study of Cognitive Aging (WHISCA): a randomized clinical trial of the effects of hormone therapy on age-associated cognitive decline. Clin Trials. 2004;1:440–50.

    Article  PubMed  Google Scholar 

  48. Zandi PP, Carlson MC, Plassman ML, et al. Hormone replacement therapy and incidence of Alzheimer’s disease is older women: Te Cache County Study. JAMA. 2002;288:2123–9.

    Article  PubMed  Google Scholar 

  49. Bender B, Linden M, Robinson A. Neuropsychological impairment in 42 adolescents with sex chromosome abnormalities. Am J Genet B Neuropsychiatr Genet. 1993;48:169–73.

    Article  Google Scholar 

  50. Haberecht MF, Menon V, Warsofsky IS, et al. Functional neuroanatomy of visuo-spatial working memory in Turner syndrome. Hum Brain Mapp. 2001;14:96–107.

    Article  PubMed  Google Scholar 

  51. McCauley EM, Kay T, Ito J, Treder R. The Turner syndrome: cognitive deficits, affective discrimination, and behavior problems. Child Dev. 1987;58:464–73.

    Article  PubMed  Google Scholar 

  52. Romans SM, Stefanatos G, Roeltgen DP, et al. Transition to young adulthood in Ullrich–Turner syndrome: neurodevelopmental changes. Am J Med Genet A. 1998;79:140–9.

    Article  Google Scholar 

  53. Zinn AR, Roeltgen D, Stefanatos G, et al. A Turner syndrome neurocognitive phenotype maps to Xp22.3. Behav Brain Funct. 2007;21:3–24.

    Google Scholar 

  54. Tsoubi T, Nielsen J, Nagayama I. Turner’s syndrome: a qualitative and quantitative analysis of EEG background activity. Hum Genet. 1998;78:206–15.

    Article  Google Scholar 

  55. Bender B, Puck M, Salbenblatt J, Robinson A. Cognitive development of unselected girls with complete and partial X monosomy. Pediatrics. 1984;73:175–82.

    PubMed  Google Scholar 

  56. Ross JL, Stefanatos G, Roeltgen D, et al. Ullrich–Turner syndrome: neurodevelopmental changes from childhood through adolescence. Am J Med Genet. 1995;58:74–82.

    Article  PubMed  Google Scholar 

  57. Cornoldi C, Marconi F, Vecchi T. Visuospatial working memory in Turner’s syndrome. Brain Cogn. 2001;46(1–2):90–4.

    Article  PubMed  Google Scholar 

  58. Ross J, Zinn A, McCauley E. Neurodevelopmental and psychosocial aspects of Turner syndrome. Ment Retard Dev Disabil Res Rev. 2000;6:135–41.

    Article  PubMed  Google Scholar 

  59. Ross JL, Kushner H, Roeltgen DP. Developmental changes in motor function in girls with Turner Syndrome. Pediatr Neurol. 1996;15:317–32.

    Article  PubMed  Google Scholar 

  60. Kesler SR, Menon V, Reiss AI. Neurofunctional differences associated with arithmetic processing in Turner Syndrome. Cereb Cortex. 2006;16:849–56.

    Article  PubMed  Google Scholar 

  61. Kesler SR, Haberecht MF, Menon V, et al. Functional neuroanatomy of spatial orientation processing in Turner Syndrome. Cereb Cortex. 2004;14(2):174–80.

    Article  PubMed  Google Scholar 

  62. Russell HF, Wallis D, Mazzocco MMM, et al. Increasing prevalence of ADHD in Turner syndrome with no evidence of imprinting effects. J Pediatr Psychol. 2006;31(9):945–55.

    Article  PubMed  Google Scholar 

  63. Nijhuis van der Sanden MWG, Eling PATM, Otten BJ. A review of neuropsychological and motor studies in Turner syndrome. Neurosci Biobehav Rev. 2003;27:329–38.

    Google Scholar 

  64. Pennington B, Bender B, Puck M, et al. Learning disabilities in children with sex chromosome anomalies. Child Dev. 1982;53:1182–92.

    Article  PubMed  Google Scholar 

  65. Waber DP. Neuropsychological aspects of Turner’s syndrome. Dev Med Child Neurol. 1979;21:58–70.

    Article  PubMed  Google Scholar 

  66. Rovet J, Netley C, Bailey J, et al. Intelligence and achievement in children with extra X aneuploidy: a longitudinal perspective. Am Med Genet B Neuropsychiatr Genet. 1995;60:356–63.

    Article  Google Scholar 

  67. Cornoldi C, De Beni R, Giusberti F, Massironi M. Memory and imagery: A visual trace is not a mental image. In: Conway’s MA, Gatherode SE, Cornoldi C, editors. Theories of memory. Hove, UK: Psychology Press. Volume 2, pp 187–210.

    Google Scholar 

  68. Lezak MD, Howieson DB, Loring DW. Neuro-psychological assessment. 4th ed. New York, NY: Oxford University Press; 2004.

    Google Scholar 

  69. Hampson E. Estrogen-related variations in human spatial and articulatory-skills. Psychoneuroendocrinology. 1990;15:97–111.

    Article  PubMed  Google Scholar 

  70. Ross JL, Roeltgen D, Feuillan P, et al. Effects of estrogen on nonverbal processing speed and motor function in girls with Turner’s syndrome. J Clin Endocrinol Metab. 1998;83(9):3198–204.

    Article  PubMed  Google Scholar 

  71. Ross JL, Roeltgen D, Stefanatos GA, et al. Androgen-responsive aspects of cognition in girls with Turner syndrome. J Clin Endocrinol Metab. 2003;88(1):292–6.

    Article  PubMed  Google Scholar 

  72. Gravholt CH, Svenstrup B, Bennett P, Sandahl Christiansen J. Reduced androgen levels in adult Turner syndrome: influence of female sex steroids and growth hormone status. Clin Endocrinol. 1999;50:791–800.

    Article  Google Scholar 

  73. Shute VJ, Pellegrino JW, Hubert L, Reynolds RW. The relationship between androgen levels and human spatial ability. Bull Psychon Soc. 1983;21:465–8.

    Google Scholar 

  74. Tirassa P, Thilbin I, Angren G, et al. High-dose anabolic androgenic steroids modulate concentrations of nerve growth factor and expression of its low affinity receptor in male rat brain. J Neurosci Res. 1997;47:198–207.

    Article  PubMed  Google Scholar 

  75. Morse JK, DeKosky ST, Scheff SW. Neurotrophic effects of steroids on lesion-induced growth in the hippocampus-II. Exp Neurol. 1992;118:47–52.

    Article  PubMed  Google Scholar 

  76. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci. 2003;23(5):1588–92.

    PubMed  Google Scholar 

  77. Leranth C, Prange-Kiel J, Frick K, Horvath TL. Low CA1 spine synapse density is further reduced by castration in male non-human primates. Cereb Cortex. 2004;14:503–10.

    Article  PubMed  Google Scholar 

  78. Kritzer ME, McLaughlin PJ, Smirlis T, Robinson JK. Gonadectomy impairs T-maze acquisition in adult male rats. Horm Behav. 2001;39:167–74.

    Article  PubMed  Google Scholar 

  79. Edinger KL, Frye CA. Testosterone’s analgesic, anxiolytic, and cognitive-enhancing effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Behav Neurosci. 2004;118(6):1352–64.

    Article  PubMed  Google Scholar 

  80. Kritzer ME, Brewer A, Montalmant F, et al. Effects of gonadectomy on performance in operant tasks measuring prefrontal cortical function in adult male rats. Horm Behav. 2007;51(2):183–94.

    Article  PubMed  Google Scholar 

  81. Kawakami J, Cowan JE, Elkin EP, et al. Androgen-deprivation therapy as primary treatment for localized prostate cancer: data from Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE). Cancer. 2006;106(8):1708–14.

    Article  PubMed  Google Scholar 

  82. Salminen EK, Portin RI, Koskinen A, et al. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res. 2004;10:7575–82.

    Article  PubMed  Google Scholar 

  83. Cherrier M, Rose AL, Higano C. The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer. J Urol. 2003;170:1808–11.

    Article  PubMed  Google Scholar 

  84. Almeida OP, Waterreus A, Spry N, et al. One year follow-up study of the associations between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology. 2004;29:1071–81.

    Article  PubMed  Google Scholar 

  85. Bussiere JR, Beer TM, Neiss MB, Janowsky JS. Androgen deprivation impairs memory in older men. Behav Neurosci. 2005;119(6):429–1437.

    Article  Google Scholar 

  86. Cherrier MM, Craft S, Matsumoto AH. Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: a preliminary report. J Androl. 2003;24(4):568–76.

    Google Scholar 

  87. Moffat SD, Zonderman AB, Metter EJ, et al. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 2002;87:5001–7.

    Article  PubMed  Google Scholar 

  88. Barrett-Connor E, Goodman-Gruen D. Cognitive function and endogenous sex hormones in older women. J Am Geriatr Soc. 1999;47:1289–93.

    PubMed  Google Scholar 

  89. Alexander GM, Swerdloff RS, Wang C, et al. Androgen-behavior correlations in hypogonadal men and eugonadal men: II. Cognitive abilities. Horm Behav. 1998;33:85–94.

    Article  PubMed  Google Scholar 

  90. Cherrier MM, Matsumoto AM, Amory JK, et al. Characterization of verbal and spatial memory changes from moderate to supraphysiological increases in serum testosterone in healthy older men. Psycho-neuroendocrinology. 2007;32:72–9.

    Article  PubMed  Google Scholar 

  91. Gandy S, Almeida OP, Fonte J, et al. Chemical andropause and amyloid-beta peptide. JAMA. 2001;285:2195–6.

    Article  PubMed  Google Scholar 

  92. Moffat SD, Zonderman AB, Metter EJ, Kawas C, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):170–1.

    Article  Google Scholar 

  93. Chu L, Tam S, Lee PWH, et al. Bioavailable testosterone is associated with a reduced risk of amnestic mild cognitive impairment in older men. Clin Endocrinol. 2008;68(4):589–98.

    Google Scholar 

  94. Kenny AM, Fabregas G, Song C, et al. Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J Gerontol. 2004;59A(1):75–8.

    Google Scholar 

  95. Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mod in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63:177–85.

    Article  PubMed  Google Scholar 

  96. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364:273–83.

    Article  PubMed  Google Scholar 

  97. Bender B, Fry E, Pennington B, et al. Speech and language development in 41 children with sex chromosome anomalies. Pediatrics. 1983;71:262–7.

    PubMed  Google Scholar 

  98. Bender BG, Puck MH, Salbenblatt JA, Robinson A. Dyslexia in 47, XXY boys identified at birth. Behav Genet. 1986;16:343–54.

    Article  PubMed  Google Scholar 

  99. Bender B, Linden M, Robinson A. Verbal and spatial processing efficiency in 32 children with sex chromosome abnormalities. Pediatr Res. 1989;25:577–9.

    Article  PubMed  Google Scholar 

  100. Itti E, Gonzalo ITG, Pawlikowska-Haddal A, et al. The structural brain correlates of cognitive deficits in adults with Klinefelter’s syndrome. J Clin Endocrinol Metab. 2006;91(4):1423–7.

    Article  PubMed  Google Scholar 

  101. Netley C, Rovet J. Hemispheric lateralization in 47, XXY Klinefelter’s syndrome boys. Brain Cogn. 1984;3(1):10–18.

    Article  PubMed  Google Scholar 

  102. Ross JL, Roeltgen DP, Benecke R, et al. Cognitive and motor development during childhood in boys with Klinefelter syndrome. Am J Med Genet A. 2008;146A(6):708–19.

    Article  PubMed  Google Scholar 

  103. Rovet J, Netley C, Bailey J, Keenan M, Stewart D. Intelligence and achievement in children with extra X aneuploidy: a longitudinal perspective. Am J Med Genet. 1995;60:356–63.

    Article  PubMed  Google Scholar 

  104. Rovet J, Netley C, Neenan M. The psychoeducational profile of boys with Klinefelter syndrome. J Learn Disabil. 1996;29:180–96.

    Article  PubMed  Google Scholar 

  105. Temple CM, Sanfilippo PM. Executive skills in Klinefelter’s syndrome. Neuropsychologia. 2003;41:1547–59.

    Article  PubMed  Google Scholar 

  106. Patwardhan AJ, Brown WE, Bender BG, et al. Reduced size of the amygdale in individuals with 47, XXY and 47, XXX karyotypes. Am J Med Genet. 2002;114(1):93–8.

    Article  PubMed  Google Scholar 

  107. Patwardhan AJ, Eliez S, Bender B, et al. Brain morphology in Klinefelter syndrome: extra X chromosome and testosterone supplementation. Neurology. 2000;54(12):2218–28.

    Article  PubMed  Google Scholar 

  108. Warwick MM, Doody GA, Lawrie SM, et al. Volumetric magnetic resonance imaging study of the brain in subjects with sex chromosome aneuploidies. J Neurol Neurosurg Psychiatry. 1999;66(5):628–32.

    Article  PubMed  Google Scholar 

  109. Geschwind DH, Gregg J, Boone K, et al. Klinefelter’s syndrome as a model of anomalous cerebral laterality: testing gene dosage in the X chromosome pseudoautosomal region using a DNA microarray. Dev Genet. 1998;23(3):215–29.

    Article  PubMed  Google Scholar 

  110. Geidd JN, Clasen LS, Wallace GL, et al. XXY (Klinefelter syndrome): a pediatric quantitative brain magnetic resonance imaging case–control study. Pediatrics. 2007;119:232–40.

    Article  Google Scholar 

  111. Waltzer S, Bashir AS, Silbert AR. Cognitive and behavioral factors in the learning disabilities of 47, XXY and 47, XYY boys. Birth Defects. 1991;26:45–58.

    Google Scholar 

  112. Robinson A, Bender BG, Borelli JB. Sex chromosome aneuploidy: prospective and longitudinal studies. Birth defects: original article series. 1986;22:23–71.

    Google Scholar 

  113. Ratcliffe S. Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child. 1999;80:192–5.

    Article  PubMed  Google Scholar 

  114. Leonard MF, Sparrow S. Prospective study of development of children with sex abnormalities: New Haven study IV. Adolescence. In: Ratcliffe SG, Paul N, editors. Birth defects: original article series, vol. 22(3). New York, NY: Alan R. Liss, Inc.; 1986. p. 221–49.

    Google Scholar 

  115. Van Rijn S, Aleman A, Swaab H. What it is said versus how it is said: comprehension of affective prosody in men with Klinefelter (47, XXY) syndrome. J Int Neuropsychol Soc. 2007;13:1065–70.

    PubMed  Google Scholar 

  116. Fales CL, Knowlton BJ, Holyoak K, et al. Working memory and relational reasoning in Klinefelter syndrome. J Int Neuropsychol. 2003;9:839–46.

    Google Scholar 

  117. Boone KB, Swerdloff RS, Miller BL. Neuropsychological profiles of adults with Klinefelter syndrome. J Int Neuropsychol Soc. 2001;7:446–56.

    Article  PubMed  Google Scholar 

  118. Stewart DA, Bailey JD, Netley CT, Park E. Growth, development, and behavioral outcome from mid-adolescence to adulthood in subjects with chromosome aneuploidy: the Toronto Study. Birth Defects. 1991;26:131–88.

    Google Scholar 

  119. Tytherleigh MY, Vedhara K, Lightman SL. Mineralocorticoid and glucocorticoid receptors and their differential effects on memory performance in people with Addison’s disease. Psychoneuroendocrinology. 2004;29:712–23.

    Article  PubMed  Google Scholar 

  120. Sapolsky R, Krey L, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuronal number: implications for aging. J Neurosci. 1985;5:1222–7.

    PubMed  Google Scholar 

  121. Sapolsky R, Krey L, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986;7:284–301.

    Article  PubMed  Google Scholar 

  122. Woolley CS, Gould R, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–31.

    Article  PubMed  Google Scholar 

  123. Wantabe Y, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of the adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–31.

    Article  Google Scholar 

  124. Bodnoff SR, Humphreys AG, Lehman JC, et al. Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-age rats. J Neurosci. 1995;15:61–9.

    PubMed  Google Scholar 

  125. Kerr DS, Campbell LW, Applegate MD, et al. Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J Neurosci. 1991;11:1316–24.

    PubMed  Google Scholar 

  126. DeLeon MJ, Rusinek H, McRae T, de Santi S, et al. Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s Disease. J Clin Endocrinol Metab. 1997;82:3251–9.

    Article  Google Scholar 

  127. Wolkowitz OM, Reus M, Weingartner H, et al. Cognitive effects of corticosteroids. Am J Psychiatry. 1990;147(10):1297–303.

    PubMed  Google Scholar 

  128. Newcomer JW, Craft S, Hershey T, et al. Glucocorticoid-induced impairment in declarative memory performance in adults humans. J Neurosci. 1994;14(4):2047–53.

    PubMed  Google Scholar 

  129. Newcomer JW, Sella H, Melson AK. Decreased memory performance in health humans induced by stress-level cortisol treatment. Arch Gen Psychiatry. 1999;56:527–33.

    Article  PubMed  Google Scholar 

  130. Schmidt LA, Fox NA, Goldberg MC, et al. Effects of acute prednisone administration on memory, attention and emotion in healthy human adults. Psychoneuroendocrinology. 1999;24:461–83.

    Article  PubMed  Google Scholar 

  131. Kirschbaum C, Wolf OT, May M, et al. Stress-and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58(17):1475–83.

    Article  PubMed  Google Scholar 

  132. Lupien S, Gillin CJ, Hauger RL. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose–response study in humans. Behav Neurosci. 1999;113(3):420–30.

    Article  PubMed  Google Scholar 

  133. Young AH, Sahakian BJ, Robbins TW. The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology. 1999;145:260–6.

    Article  PubMed  Google Scholar 

  134. Hsu FC, Garside MJ, Massey AE, et al. Effects of a single dose of cortisol on the neural correlates of episodic memory and error processing in healthy volunteers. Psychopharmacology. 2003;167:431–42.

    PubMed  Google Scholar 

  135. Naber D, Sand P, Heigl B. Psychological and neuropsychological effects of 8-days’ corticosteroid treatment. A prospective study. Psychoneuroendocrinology. 1996;21:25–31.

    Article  PubMed  Google Scholar 

  136. Het S, Ramlow G, Wolf OT. A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology. 2005;30:771–84.

    Article  PubMed  Google Scholar 

  137. Wolf OT, Convit A, McHugh PF, et al. Cortisol differentially affects memory in young and elderly men. Behav Neurosci. 2001;115:1002–11.

    Article  PubMed  Google Scholar 

  138. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2003;88:5593–602.

    Article  PubMed  Google Scholar 

  139. Simmons NE, Do HM, Lipper MH, Laws ER Jr. Cerebral atrophy in Cushing’s disease. Surg Neurol. 2000;53:72–6.

    Article  PubMed  Google Scholar 

  140. Starkman MN, Giordani B, Berent S, et al. Elevated cortisol levels in Cushing’s Disease are associated with cognitive decrements. Psychosom Med. 2001;63:985–93.

    PubMed  Google Scholar 

  141. Starkman MN, Giordani B, Gebarski SS, Schteingart DE. Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiatry. 2003;53:233–8.

    Article  PubMed  Google Scholar 

  142. Hook J, Giordani B, Schteingart DE, et al. Patterns of cognitive change over time and relationship to age following successful treatment of Cushing’s disease. J Int Neuropsychol Soc. 2007;13:21–9.

    Article  PubMed  Google Scholar 

  143. Forget H, Lacroix A, Somma M, et al. Cognitive decline in patients with Cushing’s syndrome. J Int Neuropsychol Soc. 2000;6:20–9.

    PubMed  Google Scholar 

  144. Dorn LD, Burgess ES, Dubbert B, et al. Psychopathology in patients with endogenous Cushing’s syndrome: “atypical” or melancholic features. Clin Endocrinol. 1995;43:433–42.

    Article  Google Scholar 

  145. Bourdeau I, Bard C, Noel B, et al. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab. 2002;87:1949–54.

    Article  PubMed  Google Scholar 

  146. Porter RJ, Bourke C, Gallagher P. Neuropsychological impairment in major depression: its nature, origin and clinical significance. Aust NZ J Psychiatry. 2007;41:115–28.

    Article  Google Scholar 

  147. Grillon C, Smith K, Haynos A, Nieman LK. Deficits in hippocampus-mediated Pavlovian conditioning in endogenous hypercortisolism. Biol Psychiatry. 2004;56:837–43.

    Article  PubMed  Google Scholar 

  148. Starkman MN, Giordani B, Gebarski SS, et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry. 1999;46:1595–602.

    Article  PubMed  Google Scholar 

  149. Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: does cortisol play a role? Biol Psychiatry. 2004;55:1–9.

    Article  PubMed  Google Scholar 

  150. Nieman LK, Chanco Turner ML. Addison’s disease. Clin Dermatol. 2006;24:276–80.

    Article  PubMed  Google Scholar 

  151. Oelkers W. Adrenal insufficiency. N Engl J Med. 1996;335:1206–12.

    Article  PubMed  Google Scholar 

  152. Thomsen AF, Kvist TK, Andersen PK, Kessing LV. The risk of affective disorders in patients with adrenocortical insufficiency. Psychoneuroendocrinology. 2006;31:614–22.

    Article  PubMed  Google Scholar 

  153. Anglin RE, Rosebush PI, Mazurek MF. The neuropsychiatric profile of Addison’s disease: revisiting a forgotten phenomenon. J Neuropsychiatry Clin Neurosci. 2006;18:450–59.

    Article  PubMed  Google Scholar 

  154. Mizoguchi K, Ishige A, Takeda S, et al. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. J Neurosci. 2004;23:5492–9.

    Article  Google Scholar 

  155. Oitzl MS, De Kloet ER. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci. 1992;106:62–71.

    Article  PubMed  Google Scholar 

  156. Otte C, Moritz S, Yassouridis A, et al. Blockade of the mineralocorticoid receptor in healthy men: effects on experimentally induced panic symptoms, stress, hormones, and cognition. Neuropsychopharmacology. 2007;32:232–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported in part by NIH grant DK70917, awarded to the third author. The opinions and views expressed herein are those of the authors and do not reflect those of the NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa S. Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Greene, M.M., Maher, K., Holmes, C.S. (2010). Neuropsychological Functioning of Endocrinology Disorders: Gonadotropic Hormones and Corticosteroids. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1364-7_23

Download citation

Publish with us

Policies and ethics