Skip to main content

Neuropsychology of Movement Disorders and Motor Neuron Disease

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Movement disorders fall into two broad categories: hypokinetic and hyperkinetic. Hypokinetic disorders involve a paucity of voluntary movement and are exemplified by Parkinson’s disease and related parkinsonian disorders such as progressive supranuclear palsy and multiple system atrophy; in contrast, hyperkinetic disorders are characterized by excessive involuntary movements, a classic example of which is Huntington’s disease (HD). These disorders all involve basal ganglia and/or cerebellum, and the cortical–basal ganglionic–thalamic–cortical pathophysiologies of the various disorders have been well described [1]. Motor neuron disorders are not classified as movement disorders. These disorders are grouped into upper and lower motor neuron disorders. Upper motor neuron disease is characterized by signs such as weakness, increased muscle tone, and hyperreflexia, whereas lower motor neuron disease is characterized by weakness, loss of reflexes, loss of muscle tone, fasciculations, and muscular atrophy. Although patients afflicted by motor neuron disease may have difficulty moving limbs due to weakness (for example, brushing their teeth due to upper extremity proximal weakness), they do not have a movement disorder per se. The best known motor neuron disease is amyotrophic sclerosis (ALS) or Lou Gehrig’s disease. This chapter describes the more important movement and motor neuron disorders, specifically Parkinson’s disease, progressive supranuclear palsy, essential tremor, Huntington’s disease, and ALS and highlights the pathophysiology and neurobehavioral features of each condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Israel Z, Bergman H. Pathophysiology of the basal ganglia and movement disorders: from animal models to human clinical applications. Neurosci Biobehav Rev. 2008;32:367–77.

    Article  PubMed  Google Scholar 

  2. Zhang ZX, Roman GC. Worldwide occurrence of Parkinson’s disease: an updated review. Neuroepidemiology. 1993;12:195–208.

    Article  PubMed  Google Scholar 

  3. Tanner CM, Goldman S, Ross GW. Etiology of Parkinson’s disease. In: Jankovic JJ, Tolosa E, editors. Parkinson’s disease and movement disorders. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. pp. 90–103.

    Google Scholar 

  4. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976–1990. Neurology. 1999;52:1214–20.

    Article  PubMed  Google Scholar 

  5. Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology. 1996;46:1275–84.

    Article  PubMed  Google Scholar 

  6. Braak H, Tredici KD, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  7. Braak H, Rub U, Del Tredici K. Cognitive decline correlates with neuropathological stage in Parkinson’s disease. J Neurol Sci. 2006;248:255–58.

    Article  PubMed  Google Scholar 

  8. Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol. 2002;51:156–64.

    Article  PubMed  Google Scholar 

  9. Mentis MJ, McIntosh AR, Perrine K, et al. Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry. 2002;159:746–54.

    Article  PubMed  Google Scholar 

  10. Bohnen NI, Kaufer DI, Hendrickson R, Constantine GM, Mathis CA, Moore RY. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry. 2007;78:641–43.

    Article  PubMed  Google Scholar 

  11. Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y. Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol. 1987;22:26–30.

    Article  PubMed  Google Scholar 

  12. Mayeux R, Stern Y, Cote L, Williams JB. Altered serotonin metabolism in depressed patients with Parkinson’s disease. Neurology. 1984;34:642–46.

    Article  PubMed  Google Scholar 

  13. Stern Y, Mayeux R, Cote L. Reaction time and vigilance in Parkinson’s disease. Possible role of altered norepinephrine metabolism. Arch Neurol. 1984;41:1086–89.

    Article  PubMed  Google Scholar 

  14. Kaufer DL, Tröster AI. Neuropsychology of dementia with Lewy bodies. In: Goldenberg G, Miller BL, editors. Handbook of clinical neurology: neuropsychology and behavioral neurology. 3rd ed. Amsterdam: Elsevier; 2008.

    Google Scholar 

  15. Tröster AI. Neuropsychological characteristics of dementia with Lewy bodies and Parkinson’s disease with dementia: differentiation, early detection, and implications for “mild cognitive impairment” and biomarkers. Neuropsychol Rev. 2008.

    Google Scholar 

  16. Huber SJ, Shuttleworth EC, Paulson GW, Bellchambers MJ, Clapp LE. Cortical vs subcortical dementia. Neuropsychological differences. Arch Neurol. 1986;43:392–94.

    Article  PubMed  Google Scholar 

  17. Sullivan EV, Sagar HJ. Nonverbal recognition and recency discrimination deficits in Parkinson’s disease and Alzheimer’s disease. Brain. 1989;112:1503–17.

    Article  PubMed  Google Scholar 

  18. Gabrieli JDE, Singh J, Stebbins G, Goetz CG. Reduced working memory span in Parkinson’s disease: evidence for the role of a frontostriatal system in working and strategic memory. Neuropsychology. 1996;10:322–32.

    Article  Google Scholar 

  19. Dujardin K, Degreef JF, Rogelet P, Defebvre L, Destee A. Impairment of the supervisory attentional system in early untreated patients with Parkinson’s disease. J Neurol. 1999;246:783–88.

    Article  PubMed  Google Scholar 

  20. Woodward TS, Bub DN, Hunter MA. Task switching deficits associated with Parkinson’s disease reflect depleted attentional resources. Neuropsychologia. 2002;40:1948–55.

    Article  PubMed  Google Scholar 

  21. Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia. 2003;41:645–54.

    Article  PubMed  Google Scholar 

  22. Kensinger EA, Shearer DK, Locascio JJ, Growdon JH. Working memory in mild Alzheimer’s disease and early Parkinson’s disease. Neuropsychology. 2003;17:230–39.

    Article  PubMed  Google Scholar 

  23. Rieger M, Gauggel S, Burmeister K. Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology. 2003;17:272–82.

    Article  PubMed  Google Scholar 

  24. Morris RG, Downes JJ, Sahakian BJ, Evenden JL, Heald A, Robbins TW. Planning and spatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:757–66.

    Article  PubMed  Google Scholar 

  25. Owen AM, Sahakian BJ, Hodges JR, Summers BA, Polkey CE, Robbins TW. Dopamine-dependent fronto-striatal planning deficits in early Parkinson’s disease. Neuropsychology. 1995;9:126–40.

    Article  Google Scholar 

  26. Saint-Cyr JA, Taylor AE, Lang AE. Procedural learning and neostriatal dysfunction in man. Brain. 1988;111:941–59.

    Article  PubMed  Google Scholar 

  27. Bondi MW, Kaszniak AW, Bayles KA, Vance KT. Contributions of frontal system dysfunction to memory and perceptual abilities in Parkinson’s disease. Neuropsychology. 1993;7:89–102.

    Article  Google Scholar 

  28. Pillon B, Dubois B, Ploska A, Agid Y. Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s, and Parkinson’s diseases and progressive supranuclear palsy. Neurology. 1991;41:634–43.

    Article  PubMed  Google Scholar 

  29. Bowen FP, Kamienny RS, Burns MM, Yahr M. Parkinsonism: effects of levodopa treatment on concept formation. Neurology. 1975;25:701–04.

    Article  PubMed  Google Scholar 

  30. Taylor AE, Saint-Cyr JA, Lang AE. Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain. 1986;109:845–83.

    Article  PubMed  Google Scholar 

  31. Cronin-Golomb A, Corkin S, Growdon JH. Impaired problem solving in Parkinson’s disease: impact of a set-shifting deficit. Neuropsychologia. 1994;32:579–93.

    Article  PubMed  Google Scholar 

  32. Robbins TW, Owen AM, Sahakian BJ. The neuropsychology of basal ganglia disorders: an integrative cognitive and comparative approach. In: Ron MA, David AS, editors. Disorders of brain and mind. Cambridge, UK: Cambridge University Press; 1998. pp. 57–83.

    Google Scholar 

  33. Czernecki V, Pillon B, Houeto JL, Pochon JB, Levy R, Dubois B. Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia. 2002;40:2257–67.

    Article  PubMed  Google Scholar 

  34. Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia. 2003;41:1431–41.

    Article  PubMed  Google Scholar 

  35. Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC. Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain. 1998;121:949–65.

    Article  PubMed  Google Scholar 

  36. Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 1999;122:1973–87.

    Article  PubMed  Google Scholar 

  37. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM. Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain. 2002;125:584–94.

    Article  PubMed  Google Scholar 

  38. Tomer R, Aharon-Peretz J, Tsitrinbaum Z. Dopamine asymmetry interacts with medication to affect cognition in Parkinson’s disease. Neuropsychologia. 2007;45:357–67.

    Article  PubMed  Google Scholar 

  39. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol. 2006;253:242–47.

    Article  PubMed  Google Scholar 

  40. Naville F. Les complications et let sequelles mentales de l‘encephalite epidemique. Encephale. 1922;17:369–75 and 423–36.

    Google Scholar 

  41. Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30: 1–23.

    Article  PubMed  Google Scholar 

  42. Harrington DL, Haaland KY, Yeo RA, Marder E. Procedural memory in Parkinson’s disease: impaired motor but not visuoperceptual learning. J Clin Exp Neuropsychol. 1990;12:323–39.

    Article  PubMed  Google Scholar 

  43. Heindel WC, Salmon DP, Shults CW, Walicke PA, Butters N. Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci. 1989;9:582–87.

    PubMed  Google Scholar 

  44. Levin BE, Llabre MM, Weiner WJ. Cognitive impairments associated with early Parkinson’s disease. Neurology. 1989;39:557–61.

    Article  PubMed  Google Scholar 

  45. Lewis FM, Lapointe LL, Murdoch BE. Language impairment in Parkinson’s disease. Aphasiology. 1998;12:193–206.

    Article  Google Scholar 

  46. Globus M, Mildworf B, Melamed E. Cerebral blood flow and cognitive impairment in Parkinson’s disease. Neurology. 1985;35:1135–39.

    Article  PubMed  Google Scholar 

  47. Matison R, Mayeux R, Rosen J, Fahn S. “Tip-of-the-tongue” phenomenon in Parkinson disease. Neurology. 1982;32:567–70.

    Article  PubMed  Google Scholar 

  48. Beatty WW, Monson N. Lexical processing in Parkinson’s disease and multiple sclerosis. J Geriatr Psychiatry Neurol. 1989;2:145–52.

    Article  PubMed  Google Scholar 

  49. Zec RF, Landreth ES, Fritz S, et al. A comparison of phonemic, semantic, and alternating word fluency in Parkinson’s disease. Arch Clin Neuropsychol. 1999;14:255–64.

    PubMed  Google Scholar 

  50. Piatt AL, Fields JA, Paolo AM, Koller WC, Tröster AI. Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. J Clin Exp Neuropsychol. 1999;21:435–43.

    Article  PubMed  Google Scholar 

  51. Randolph C, Braun AR, Goldberg TE, Chase TN. Semantic fluency in Alzheimer’s, Parkinson’s, and Huntington’s disease: dissociation of storage and retrieval failures. Neuropsychology. 1993;7:82–88.

    Article  Google Scholar 

  52. Tröster AI, Fields JA, Testa JA, et al. Cortical and subcortical influences on clustering and switching in the performance of verbal fluency tasks. Neuropsychologia. 1998;36:295–304.

    Article  PubMed  Google Scholar 

  53. Troyer AK, Moscovitch M, Winocur G, Leach L, Freedman M. Clustering and switching on verbal fluency tests in Alzheimer’s and Parkinson’s disease. J Int Neuropsychol Soc. 1998;4:137–43.

    Article  PubMed  Google Scholar 

  54. Murray LL. Spoken language production in Huntington’s and Parkinson’s diseases. J Speech Lang Hear Res. 2000;43:1350–66.

    PubMed  Google Scholar 

  55. Cohen H, Bouchard S, Scherzer P, Whitaker H. Language and verbal reasoning in Parkinson’s disease. Neuropsychiatry Neuropsychol Behav Neurol. 1994;7:166–75.

    Google Scholar 

  56. Ullman MT, Corkin S, Coppola M, et al. A neural dissociation within language: evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J Cogn Neurosci. 1997;9:266–76.

    Article  Google Scholar 

  57. Grossman M, Zurif E, Lee C, et al. Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology. 2002;16:174–81.

    Article  PubMed  Google Scholar 

  58. Grossman M, Cooke A, DeVita C, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60:775–81.

    Article  PubMed  Google Scholar 

  59. Lee C, Grossman M, Morris J, Stern MB, Hurtig HI. Attentional resource and processing speed limitations during sentence processing in Parkinson’s disease. Brain Lang. 2003;85:347–56.

    Article  PubMed  Google Scholar 

  60. Foltynie T, Brayne CE, Robbins TW, Barker RA. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain. 2004;127: 550–60.

    Article  PubMed  Google Scholar 

  61. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65:1239–45.

    Article  PubMed  Google Scholar 

  62. Faglioni P, Saetti MC, Botti C. Verbal learning strategies in Parkinson’s disease. Neuropsychology. 2000;14:456–70.

    Article  PubMed  Google Scholar 

  63. Beatty WW, Staton RD, Weir WS, Monson N, Whitaker HA. Cognitive disturbances in Parkinson’s disease. J Geriatr Psychiatry Neurol. 1989;2:22–33.

    Article  PubMed  Google Scholar 

  64. Whittington CJ, Podd J, Kan MM. Recognition memory impairment in Parkinson’s disease: power and meta-analyses. Neuropsychology. 2000;14:233–46.

    Article  PubMed  Google Scholar 

  65. Tierney MC, Nores A, Snow WG, Fisher RH, Zorzitto ML, Reid DW. Use of the rey auditory verbal learning test in differentiating normal aging from Alzheimer’s and Parkinson’s dementia. Psychol Assess. 1994;6:129–34.

    Article  Google Scholar 

  66. Buytenhuijs EL, Berger HJ, Van Spaendonck KP, Horstink MW, Borm GF, Cools AR. Memory and learning strategies in patients with Parkinson’s disease. Neuropsychologia. 1994;32:335–42.

    Article  PubMed  Google Scholar 

  67. Weintraub D, Moberg PJ, Culbertson WC, Duda JE, Stern MB. Evidence for impaired encoding and retrieval memory profiles in Parkinson disease. Cogn Behav Neurol. 2004;17:195–200.

    PubMed  Google Scholar 

  68. Berger HJ, van Es NJ, van Spaendonck KP, et al. Relationship between memory strategies and motor symptoms in Parkinson’s disease. J Clin Exp Neuropsychol. 1999;21:677–84.

    Article  PubMed  Google Scholar 

  69. Stefanova ED, Kostic VS, Ziropadja LJ, Ocic GG, Markovic M. Declarative memory in early Parkinson’s disease: serial position learning effects. J Clin Exp Neuropsychol. 2001;23:581–91.

    Article  PubMed  Google Scholar 

  70. Taylor AE, Saint-Cyr JA. The neuropsychology of Parkinson’s disease. Brain Cogn. 1995;28:281–96.

    Article  PubMed  Google Scholar 

  71. Massman PJ, Delis DC, Butters N, Levin BE, Salmon DP. Are all subcortical dementias alike? Verbal learning and memory in Parkinson’s and Huntington’s disease patients. J Clin Exp Neuropsychol. 1990;12:729–44.

    Article  PubMed  Google Scholar 

  72. Rouleau I, Imbault H, Laframboise M, Bedard MA. Pattern of intrusions in verbal recall: comparison of Alzheimer’s disease, Parkinson’s disease, and frontal lobe dementia. Brain Cogn. 2001;46:244–49.

    Article  PubMed  Google Scholar 

  73. Fama R, Sullivan EV, Shear PK, et al. Extent, pattern, and correlates of remote memory impairment in Alzheimer’s disease and Parkinson’s disease. Neuropsychology. 2000;14:265–76.

    Article  PubMed  Google Scholar 

  74. Leplow B, Dierks C, Herrmann P, Pieper N, Annecke R, Ulm G. Remote memory in Parkinson’s disease and senile dementia. Neuropsychologia. 1997;35:547–57.

    Article  PubMed  Google Scholar 

  75. Sagar HJ, Cohen NJ, Sullivan EV, Corkin S, Growdon JH. Remote memory function in Alzheimer’s disease and Parkinson’s disease. Brain. 1988;111:185–206.

    Article  PubMed  Google Scholar 

  76. Venneri A, Nichelli P, Modonesi G, Molinari MA, Russo R, Sardini C. Impairment in dating and retrieving remote events in patients with early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:410–13.

    Article  PubMed  Google Scholar 

  77. Pillon B, Deweer B, Vidailhet M, Bonnet AM, Hahn-Barma V, Dubois B. Is impaired memory for spatial location in Parkinson’s disease domain specific or dependent on ‘strategic’ processes? Neuropsychologia. 1998;36:1–9.

    Article  PubMed  Google Scholar 

  78. Hsieh S, Lee C-Y. Source memory in Parkinson’s disease. Percept Mot Skills. 1999;89:355–67.

    Article  PubMed  Google Scholar 

  79. Ivory S-J, Knight RG, Longmore BE, Caradoc-Davies T. Verbal memory in non-demented patients with idiopathic Parkinson’s disease. Neuropsychologia. 1999;37:817–28.

    Article  PubMed  Google Scholar 

  80. Fischer P, Kendler P, Goldenberg G. Recency-primacy recognition in Parkinson’s disease. J Neural Transm. 1990;2:71–77.

    Article  Google Scholar 

  81. Cooper JA, Sagar HJ. Incidental and intentional recall in Parkinson’s disease: an account based on diminished attentional resources. J Clin Exp Neuropsychol. 1993;15:713–31.

    Article  PubMed  Google Scholar 

  82. West R, Ergis AM, Winocur G, Saint-Cyr J. The contribution of impaired working memory monitoring to performance of the self-ordered pointing task in normal aging and Parkinson’s disease. Neuropsychology. 1998;12:546–54.

    Article  PubMed  Google Scholar 

  83. Kliegel M, Phillips LH, Lemke U, Kopp UA. Planning and realisation of complex intentions in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1501–05.

    Article  PubMed  Google Scholar 

  84. Copland D. The basal ganglia and semantic engagement: potential insights from semantic priming in individuals with subcortical vascular lesions, Parkinson’s disease, and cortical lesions. J Int Neuropsychol Soc. 2003;9:1041–52.

    Article  PubMed  Google Scholar 

  85. Angwin AJ, Chenery HJ, Copland DA, Murdoch BE, Silburn PA. The speed of lexical activation is altered in Parkinson’s disease. J Clin Exp Neuropsychol. 2007;29:73–85.

    Article  PubMed  Google Scholar 

  86. Castner JE, Copland DA, Silburn PA, Coyne TJ, Sinclair F, Chenery HJ. Lexical-semantic inhibitory mechanisms in Parkinson’s disease as a function of subthalamic stimulation. Neuropsychologia. 2007;45:3167–77.

    Article  PubMed  Google Scholar 

  87. Lee AC, Harris JP, Calvert JE. Impairments of mental rotation in Parkinson’s disease. Neuropsychologia. 1998;36:109–14.

    Article  PubMed  Google Scholar 

  88. Levin BE, Llabre MM, Reisman S, et al. Visuospatial impairment in Parkinson’s disease. Neurology. 1991;41:365–69.

    Article  PubMed  Google Scholar 

  89. Bodis-Wollner I. Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord. 2003;9:S83–9.

    Article  PubMed  Google Scholar 

  90. Cousins R, Hanley JR, Davies AD, Turnbull CJ, Playfer JR. Understanding memory for faces in Parkinson’s disease: the role of configural processing. Neuropsychologia. 2000;38:837–47.

    Article  PubMed  Google Scholar 

  91. Slaughter JR, Slaughter KA, Nichols D, Holmes SE, Martens MP. Prevalence, clinical manifestations, etiology, and treatment of depression in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2001;13:187–96.

    Article  PubMed  Google Scholar 

  92. Shulman LM, Taback RL, Rabinstein AA, Weiner WJ. Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord. 2002;8:193–97.

    Article  PubMed  Google Scholar 

  93. Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB. Recognition and treatment of depression in Parkinson’s disease. J Geriatr Psychiatry Neurol. 2003;16:178–83.

    Article  PubMed  Google Scholar 

  94. Myslobodsky M, Lalonde FM, Hicks L. Are patients with Parkinson’s disease suicidal? J Geriatr Psychiatry Neurol. 2001;14:120–24.

    Article  PubMed  Google Scholar 

  95. Weintraub D, Morales KH, Moberg PJ, et al. Antidepressant studies in Parkinson’s disease: a review and meta-analysis. Mov Disord. 2005;20:1161–69.

    Article  PubMed  Google Scholar 

  96. Barone P, Scarzella L, Marconi R, et al. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253:601–07.

    Article  PubMed  Google Scholar 

  97. Menza M, Dobkin RD, Marin H, et al. The impact of treatment of depression on quality of life, disability and relapse in patients with Parkinson’s disease. Mov Disord. 2009.

    Google Scholar 

  98. Menza M, Dobkin RD, Marin H, et al. A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology. 2009;72:886–92.

    Article  PubMed  Google Scholar 

  99. Dobkin RD, Allen LA, Menza M. Cognitive-behavioral therapy for depression in Parkinson’s disease: a pilot study. Mov Disord. 2007;22:946–52.

    Article  PubMed  Google Scholar 

  100. Schiffer RB, Kurlan R, Rubin A, Boer S. Evidence for atypical depression in Parkinson’s disease. Am J Psychiatry. 1988;145:1020–22.

    PubMed  Google Scholar 

  101. Walsh K, Bennett G. Parkinson’s disease and anxiety. Postgrad Med J. 2001;77:89–93.

    Article  PubMed  Google Scholar 

  102. Pontone GM, Williams JR, Anderson KE, et al. Prevalence of anxiety disorders and anxiety subtypes in patients with Parkinson’s disease. Mov Disord. 2009.

    Google Scholar 

  103. Stein MB, Heuser IJ, Juncos JL, Uhde TW. Anxiety disorders in patients with Parkinson’s disease. Am J Psychiatry. 1990;147:217–20.

    PubMed  Google Scholar 

  104. Vazquez A, Jimenez-Jimenez FJ, Garcia-Ruiz P, Garcia-Urra D. “Panic attacks” in Parkinson’s disease. A long-term complication of levodopa therapy. Acta Neurologica Scandanavica. 1993;87:14–18.

    Article  Google Scholar 

  105. Alegret M, Junque C, Valldeoriola F, Vendrell P, Marti MJ, Tolosa E. Obsessive-compulsive symptoms in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70:394–96.

    Article  PubMed  Google Scholar 

  106. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10:333–59.

    Article  PubMed  Google Scholar 

  107. Richardson JC, Steele J, Olszewski J. Supranuclear ophthalmoplegia, pseudobulbar palsy, nuchal dystonia and dementia. A clinical report on eight cases of “heterogenous system degeneration”. Trans Am Neurol Assoc. 1963;88:25–29.

    PubMed  Google Scholar 

  108. Litvan I, Agid Y, Jankovic J, et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology. 1996;46:922–30.

    Article  PubMed  Google Scholar 

  109. Nath U, Ben-Shlomo Y, Thomson RG, et al. The prevalence of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) in the UK. Brain. 2001;124:1438–49.

    Article  PubMed  Google Scholar 

  110. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49:1284–88.

    Article  PubMed  Google Scholar 

  111. Burn DJ, Lees AJ. Progressive supranuclear palsy: where are we now? Lancet Neurol. 2002;1:359–69.

    Article  PubMed  Google Scholar 

  112. Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol. 2007;17:74–82.

    Article  PubMed  Google Scholar 

  113. Warren NM, Burn DJ. Progressive supranuclear palsy. Pract Neurol. 2007;7:16–23.

    PubMed  Google Scholar 

  114. Kaat LD, Boon AJ, Kamphorst W, Ravid R, Duivenvoorden HJ, van Swieten JC. Frontal presentation in progressive supranuclear palsy. Neurology. 2007;69:723–29.

    Article  Google Scholar 

  115. Tröster AI, Fields JA. Parkinson’s disease, progressive supranuclear palsy, corticobasal degeneration, and related disorders of the frontostriatal system. In: Morgan JE, Ricker JH, editors. Textbook of clinical neuropsychology. New York, NY: Psychology Press; 2008. pp. 536–77.

    Google Scholar 

  116. Williams DR, de Silva R, Paviour DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain. 2005;128:1247–58.

    Article  PubMed  Google Scholar 

  117. Albert ML, Feldman RG, Willis AL. The ‘subcortical dementia’ of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1974;37:121–30.

    Article  PubMed  Google Scholar 

  118. Rafal RD, Posner MI, Friedman JH, Inhoff AW, Bernstein E. Orienting of visual attention in progressive supranuclear palsy. Brain. 1988;111(Pt 2):267–80.

    Article  PubMed  Google Scholar 

  119. Monza D, Soliveri P, Radice D, et al. Cognitive dysfunction and impaired organization of complex motility in degenerative parkinsonian syndromes. Arch Neurol. 1998;55:372–78.

    Article  PubMed  Google Scholar 

  120. Millar D, Griffiths P, Zermansky AJ, Burn DJ. Characterizing behavioral and cognitive dysexecutive changes in progressive supranuclear palsy. Mov Disord. 2006;21:199–207.

    Article  PubMed  Google Scholar 

  121. Soliveri P, Monza D, Paridi D, et al. Neuropsychological follow up in patients with Parkinson’s disease, striatonigral degeneration-type multisystem atrophy, and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2000;69:313–18.

    Article  PubMed  Google Scholar 

  122. Dubois B, Slachevsky A, Pillon B, Beato R, Villalponda JM, Litvan I. “Applause sign” helps to discriminate PSP from FTD and PD. Neurology. 2005;64: 2132–2133.

    Article  PubMed  Google Scholar 

  123. Grafman J, Litvan I, Stark M. Neuropsychological features of progressive supranuclear palsy. Brain Cogn. 1995;28:311–20.

    Article  PubMed  Google Scholar 

  124. Soliveri P, Piacentini S, Girotti F. Limb apraxia in corticobasal degeneration and progressive supranuclear palsy. Neurology. 2005;64:448–53.

    Article  PubMed  Google Scholar 

  125. O‘Sullivan SS, Massey LA, Williams DR, et al. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain. 2008;131:1362–72.

    Article  PubMed  Google Scholar 

  126. Cordato NJ, Halliday GM, Caine D, Morris JG. Comparison of motor, cognitive, and behavioral features in progressive supranuclear palsy and Parkinson’s disease. Mov Disord. 2006;21:632–38.

    Article  PubMed  Google Scholar 

  127. Rosser A, Hodges JR. Initial letter and semantic category fluency in Alzheimer’s disease, Huntington’s disease, and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1994;57:1389–94.

    Article  PubMed  Google Scholar 

  128. Cotelli M, Borroni B, Manenti R, et al. Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology. 2006;20:558–65.

    Article  PubMed  Google Scholar 

  129. Podoll K, Schwarz M, Noth J. Language functions in progressive supranuclear palsy. Brain. 1991;114(Pt 3):1457–72.

    Article  PubMed  Google Scholar 

  130. Aarsland D, Litvan I, Salmon D, Galasko D, Wentzel-Larsen T, Larsen JP. Performance on the dementia rating scale in Parkinson’s disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1215–20.

    Article  PubMed  Google Scholar 

  131. Pillon B, Gouider-Khouja N, Deweer B, et al. Neuropsychological pattern of striatonigral degeneration: comparison with Parkinson’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1995;58:174–79.

    Article  PubMed  Google Scholar 

  132. Bak TH, Caine D, Hearn VC, Hodges JR. Visuospatial functions in atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2006;77:454–56.

    Article  PubMed  Google Scholar 

  133. Joel D. Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Mov Disord. 2001;16:407–23.

    Article  PubMed  Google Scholar 

  134. Litvan I, Mega MS, Cummings JL, Fairbanks L. Neuropsychiatric aspects of progressive supranuclear palsy. Neurology. 1996;47:1184–89.

    Article  PubMed  Google Scholar 

  135. Aarsland D, Litvan I, Larsen JP. Neuropsychiatric symptoms of patients with progressive supranuclear palsy and Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2001;13:42–49.

    Article  PubMed  Google Scholar 

  136. O‘Keeffe FM, Murray B, Coen RF, et al. Loss of insight in frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy. Brain. 2007;130:753–64.

    Article  PubMed  Google Scholar 

  137. Benito-Leon J, Louis ED. Essential tremor: emerging views of a common disorder. Nat Clin Pract Neurol. 2006;2:666–78 quiz 662p following 691.

    Article  PubMed  Google Scholar 

  138. Louis ED, Ottman R, Hauser WA. How common is the most common adult movement disorder? Estimates of the prevalence of essential tremor throughout the world. Mov Disord. 1998;13:5–10.

    Article  PubMed  Google Scholar 

  139. Louis ED, Vonsattel JP. The emerging neuropathology of essential tremor. Mov Disord. 2008;23:174–82.

    Article  PubMed  Google Scholar 

  140. Pagan FL, Butman JA, Dambrosia JM, Hallett M. Evaluation of essential tremor with multi-voxel magnetic resonance spectroscopy. Neurology. 2003;60:1344–47.

    Article  PubMed  Google Scholar 

  141. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ. A positron emission tomography study of cerebral activation associated with essential and writing tremor. Arch Neurol. 1995;52:299–305.

    Article  PubMed  Google Scholar 

  142. Martinelli P, Rizzo G, Manners D, et al. Diffusion-weighted imaging study of patients with essential tremor. Mov Disord. 2007;22:1182–85.

    Article  PubMed  Google Scholar 

  143. Rajput A, Robinson CA, Rajput AH. Essential tremor course and disability: a clinicopathologic study of 20 cases. Neurology. 2004;62:932–6.

    Article  PubMed  Google Scholar 

  144. Louis ED, Barnes L, Albert SM, et al. Correlates of functional disability in essential tremor. Mov Disord. 2001;16:914–20.

    Article  PubMed  Google Scholar 

  145. Busenbark KL, Nash J, Nash S, Hubble JP, Koller WC. Is essential tremor benign? Neurology. 1991;41:1982–1983.

    Article  PubMed  Google Scholar 

  146. Lorenz D, Schwieger D, Moises H, Deuschl G. Quality of life and personality in essential tremor patients. Mov Disord. 2006;21:1114–18.

    Article  PubMed  Google Scholar 

  147. Troster AI, Pahwa R, Fields JA, Tanner CM, Lyons KE. Quality of life in essential tremor questionnaire (QUEST): development and initial validation. Parkinsonism Relat Disord. 2005;11:367–73.

    Article  PubMed  Google Scholar 

  148. Woods SP, Scott JC, Fields JA, Poquette A, Troster AI. Executive dysfunction and neuropsychiatric symptoms predict lower health status in essential tremor. Cogn Behav Neurol. 2008;21:28–33.

    Article  PubMed  Google Scholar 

  149. Bermejo-Pareja F, Louis ED, Benito-Leon J. Risk of incident dementia in essential tremor: a population-based study. Mov Disord. 2007;22:1573–80.

    Article  PubMed  Google Scholar 

  150. Benito-Leon J, Louis ED, Bermejo-Pareja F. Population-based case-control study of cognitive function in essential tremor. Neurology. 2006;66:69–74.

    Article  PubMed  Google Scholar 

  151. Higginson CI, Wheelock VL, Levine D, King DS, Pappas CT, Sigvardt KA. Cognitive deficits in essential tremor consistent with frontosubcortical dysfunction. J Clin Exp Neuropsychol. 2008; 1–6.

    Google Scholar 

  152. Tröster AI, Woods SP, Fields JA, et al. Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol. 2002;9:143–51.

    Article  PubMed  Google Scholar 

  153. Duane DD, Vermilion KJ. Cognitive deficits in patients with essential tremor. Neurology. 1706;2002:58.

    Google Scholar 

  154. Gasparini M, Bonifati V, Fabrizio E, et al. Frontal lobe dysfunction in essential tremor: a preliminary study. J Neurol. 2001;248:399–402.

    Article  PubMed  Google Scholar 

  155. Sahin HA, Terzi M, Ucak S, Yapici O, Basoglu T, Onar M. Frontal functions in young patients with essential tremor: a case comparison study. J Neuropsychiatry Clin Neurosci. 2006;18:64–72.

    Article  PubMed  Google Scholar 

  156. Heroux ME, Parisi SL, Larocerie-Salgado J, Norman KE. Upper-extremity disability in essential tremor. Arch Phys Med Rehabil. 2006;87:661–70.

    Article  PubMed  Google Scholar 

  157. Putzke JD, Uitti RJ, Obwegeser AA, Wszolek ZK, Wharen RE. Bilateral thalamic deep brain stimulation: midline tremor control. J Neurol Neurosurg Psychiatry. 2005;76:684–90.

    Article  PubMed  Google Scholar 

  158. Lacritz LH, Dewey R Jr., Giller C, Cullum CM. Cognitive functioning in individuals with “benign” essential tremor. J Int Neuropsychol Soc. 2002;8:125–29.

    Article  PubMed  Google Scholar 

  159. Lombardi WJ, Woolston DJ, Roberts JW, Gross RE. Cognitive deficits in patients with essential tremor. Neurology. 2001;57:785–90.

    Article  PubMed  Google Scholar 

  160. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.

    Article  PubMed  Google Scholar 

  161. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110: 763–73.

    Article  PubMed  Google Scholar 

  162. Lawrence AD, Hodges JR, Rosser AE, et al. Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain. 1998;121(Pt 7):1329–41.

    Article  PubMed  Google Scholar 

  163. Schneier FR, Barnes LF, Albert SM, Louis ED. Characteristics of social phobia among persons with essential tremor. J Clin Psychiatry. 2001;62:367–72.

    Article  PubMed  Google Scholar 

  164. Miller KM, Okun MS, Fernandez HF, Jacobson CE 4th, Rodriguez RL, Bowers D. Depression symptoms in movement disorders: comparing Parkinson’s disease, dystonia, and essential tremor. Mov Disord. 2007;22:666–72.

    Article  PubMed  Google Scholar 

  165. Walker FO. Huntington’s disease. Lancet. 2007;369:218–28.

    Article  PubMed  Google Scholar 

  166. Kieburtz K, MacDonald M, Shih C, et al. Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet. 1994;31:872–74.

    Article  PubMed  Google Scholar 

  167. Kokmen E, Ozekmekci FS, Beard CM, O‘Brien PC, Kurland LT. Incidence and prevalence of Huntington’s disease in Olmsted County, Minnesota (1950 through 1989). Arch Neurol. 1994;51:696–98.

    Article  PubMed  Google Scholar 

  168. Andrew SE, Goldberg YP, Kremer B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet. 1993;4:398–403.

    Article  PubMed  Google Scholar 

  169. Foroud T, Gray J, Ivashina J, Conneally PM. Differences in duration of Huntington’s disease based on age at onset. J Neurol Neurosurg Psychiatry. 1999;66:52–56.

    Article  PubMed  Google Scholar 

  170. Ferrante RJ, Kowall NW, Richardson EP Jr. Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci. 1991;11:3877–87.

    PubMed  Google Scholar 

  171. Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F. Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry. 2008;79:130–35.

    Article  PubMed  Google Scholar 

  172. Hasselbalch SG, Oberg G, Sorensen SA, et al. Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT. J Neurol Neurosurg Psychiatry. 1992;55:1018–23.

    Article  PubMed  Google Scholar 

  173. Georgiou-Karistianis N, Sritharan A, Farrow M, et al. Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia. 2007;45:1791–800.

    Article  PubMed  Google Scholar 

  174. Cummings JL, Benson DF. Psychological dysfunction accompanying subcortical dementias. Annu Rev Med. 1988;39:53–61.

    Article  PubMed  Google Scholar 

  175. Stout JC, Weaver M, Solomon AC, et al. Are cognitive changes progressive in prediagnostic HD? Cogn Behav Neurol. 2007;20:212–18.

    Article  PubMed  Google Scholar 

  176. Ho AK, Sahakian BJ, Brown RG, et al. Profile of cognitive progression in early Huntington’s disease. Neurology. 2003;61:1702–06.

    Article  PubMed  Google Scholar 

  177. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R. Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation – a longitudinal follow-up study. J Neurol. 2004;251:935–42.

    Article  PubMed  Google Scholar 

  178. Sprengelmeyer R, Lange H, Homberg V. The pattern of attentional deficits in Huntington’s disease. Brain. 1995;118(Pt 1):145–52.

    Article  PubMed  Google Scholar 

  179. Hanes KR, Andrewes DG, Pantelis C. Cognitive flexibility and complex integration in Parkinson’s disease, Huntington’s disease, and schizophrenia. J Int Neuropsychol Soc. 1995;1:545–53.

    Article  PubMed  Google Scholar 

  180. Watkins LH, Rogers RD, Lawrence AD, Sahakian BJ, Rosser AE, Robbins TW. Impaired planning but intact decision making in early Huntington’s disease: implications for specific fronto-striatal pathology. Neuropsychologia. 2000;38:1112–25.

    Article  PubMed  Google Scholar 

  181. Zakzanis KK. The subcortical dementia of Huntington’s disease. J Clin Exp Neuropsychol. 1998;20:565–78.

    Article  PubMed  Google Scholar 

  182. Peinemann A, Schuller S, Pohl C, Jahn T, Weindl A, Kassubek J. Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci. 2005;239:11–19.

    Article  PubMed  Google Scholar 

  183. Stout JC, Rodawalt WC, Siemers ER. Risky decision making in Huntington’s disease. J Int Neuropsychol Soc. 2001;7:92–101.

    Article  PubMed  Google Scholar 

  184. Hinton SC, Paulsen JS, Hoffmann RG, Reynolds NC, Zimbelman JL, Rao SM. Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc. 2007;13:539–43.

    Article  PubMed  Google Scholar 

  185. Snowden JS, Craufurd D, Thompson J, Neary D. Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neuropsychol. 2002;24:133–45.

    Article  PubMed  Google Scholar 

  186. Murray LL, Lenz LP. Productive syntax abilities in Huntington’s and Parkinson’s diseases. Brain Cogn. 2001;46:213–19.

    Article  PubMed  Google Scholar 

  187. Hodges JR, Salmon DP, Butters N. The nature of the naming deficit in Alzheimer’s and Huntington’s disease. Brain. 1991;114:1547–58.

    Article  PubMed  Google Scholar 

  188. Henry JD, Crawford JR, Phillips LH. A meta-analytic review of verbal fluency deficits in Huntington’s disease. Neuropsychology. 2005;19:243–52.

    Article  PubMed  Google Scholar 

  189. Rich JB, Troyer AK, Bylsma FW, Brandt J. Longitudinal analysis of phonemic clustering and switching during word-list generation in Huntington’s disease. Neuropsychology. 1999;13:525–31.

    Article  PubMed  Google Scholar 

  190. Montoya A, Pelletier M, Menear M, Duplessis E, Richer F, Lepage M. Episodic memory impairment in Huntington’s disease: a meta-analysis. Neuropsychologia. 2006;44:1984–94.

    Article  PubMed  Google Scholar 

  191. Fine EM, Delis DC, Wetter SR, et al. Identifying the “source” of recognition memory deficits in patients with Huntington’s disease or Alzheimer’s disease: evidence from the CVLT-II. J Clin Exp Neuropsychol. 2008;30:463–70.

    Article  PubMed  Google Scholar 

  192. Delis DC, Wetter SR, Jacobson MW, et al. Recall discriminability: utility of a new CVLT-II measure in the differential diagnosis of dementia. J Int Neuropsychol Soc. 2005;11:708–15.

    Article  PubMed  Google Scholar 

  193. Beatty WW, Salmon DP, Butters N, Heindel WC, Granholm EL. Retrograde amnesia in patients with Alzheimer’s disease or Huntington’s disease. Neurobiol Aging. 1988;9:181–86.

    Article  PubMed  Google Scholar 

  194. Brandt J. Huntington’s disease. In: Grant I, Adams KM, editors. Neuropsychological assessment of neuropsychiatric and neuromedical disorders. 3rd ed. New York, NY: Oxford University Press; 2009. pp. 223–40.

    Google Scholar 

  195. Blekher T, Johnson SA, Marshall J, et al. Saccades in presymptomatic and early stages of Huntington disease. Neurology. 2006;67:394–99.

    Article  PubMed  Google Scholar 

  196. Bylsma FW, Brandt J, Strauss ME. Personal and extrapersonal orientation in Huntington’s disease patients and those at risk. Cortex. 1992;28:113–22.

    PubMed  Google Scholar 

  197. Lineweaver TT, Salmon DP, Bondi MW, Corey-Bloom J. Differential effects of Alzheimer’s disease and Huntington’s disease on the performance of mental rotation. J Int Neuropsychol Soc. 2005;11:30–39.

    Article  PubMed  Google Scholar 

  198. Couette M, Bachoud-Levi AC, Brugieres P, Sieroff E, Bartolomeo P. Orienting of spatial attention in Huntington’s disease. Neuropsychologia. 2008;46:1391–400.

    Article  PubMed  Google Scholar 

  199. Nehl C, Paulsen JS. Cognitive and psychiatric aspects of Huntington disease contribute to functional capacity. J Nerv Ment Dis. 2004;192: 72–74.

    Article  PubMed  Google Scholar 

  200. Paulsen JS, Mikos A. Huntington’s disease. In: Morgan JE, Ricker JH, editors. Textbook of clinical neuropsychology. New York, NY: Psychology Press; 2008. pp. 616–35.

    Google Scholar 

  201. Paulsen JS, Nehl C, Hoth KF, et al. Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci. 2005;17:496–502.

    Article  PubMed  Google Scholar 

  202. Farrer LA. Suicide and attempted suicide in Huntington disease: implications for preclinical testing of persons at risk. Am J Med Genet. 1986;24:305–11.

    Article  PubMed  Google Scholar 

  203. Almqvist EW, Bloch M, Brinkman R, Craufurd D, Hayden MR. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. Am J Hum Genet. 1999;64:1293–304.

    Article  PubMed  Google Scholar 

  204. van Duijn E, Kingma EM, van der Mast RC. Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci. 2007;19:441–48.

    Article  PubMed  Google Scholar 

  205. Woolley SC, Katz JS. Cognitive and behavioral impairment in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am. 2008;19:607–17 xi.

    Article  PubMed  Google Scholar 

  206. Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6:994–1003.

    Article  PubMed  Google Scholar 

  207. Lakerveld J, Kotchoubey B, Kubler A. Cognitive function in patients with late stage amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2008;79:25–29.

    Article  PubMed  Google Scholar 

  208. Logroscino G, Traynor BJ, Hardiman O, et al. Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry. 2008;79:6–11.

    Article  PubMed  Google Scholar 

  209. Hardiman O, Greenway M. The complex genetics of amyotrophic lateral sclerosis. Lancet Neurol. 2007;6:291–292.

    Article  PubMed  Google Scholar 

  210. Rakowicz WP, Hodges JR. Dementia and aphasia in motor neuron disease: an underrecognised association? J Neurol Neurosurg Psychiatry. 1998;65:881–89.

    Article  PubMed  Google Scholar 

  211. Neary D, Snowden JS, Mann DM. Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). J Neurol Sci. 2000;180:15–20.

    Article  PubMed  Google Scholar 

  212. Moretti R, Torre P, Antonello RM, Carraro N, Cazzato G, Bava A. Complex cognitive disruption in motor neuron disease. Dement Geriatr Cogn Disord. 2002;14:141–50.

    Article  PubMed  Google Scholar 

  213. Abrahams S, Leigh PN, Goldstein LH. Cognitive change in ALS: a prospective study. Neurology. 2005;64:1222–26.

    Article  PubMed  Google Scholar 

  214. Kew JJ, Goldstein LH, Leigh PN, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain. 1993;116(Pt 6):1399–423.

    Article  PubMed  Google Scholar 

  215. Ludolph AC, Langen KJ, Regard M, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992;85:81–89.

    Article  PubMed  Google Scholar 

  216. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65:586–90.

    Article  PubMed  Google Scholar 

  217. David AS, Gillham RA. Neuropsychological study of motor neuron disease. Psychosomatics. 1986;27:441–45.

    Article  PubMed  Google Scholar 

  218. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996;61:450–55.

    Article  PubMed  Google Scholar 

  219. Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53:23–32.

    Article  PubMed  Google Scholar 

  220. Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U, et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J Neurol. 2005;252:772–81.

    Article  PubMed  Google Scholar 

  221. Abrahams S, Goldstein LH, Suckling J, et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol. 2005;252:321–31.

    Article  PubMed  Google Scholar 

  222. Chang JL, Lomen-Hoerth C, Murphy J, et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology. 2005;65:75–80.

    Article  PubMed  Google Scholar 

  223. Murphy JM, Henry RG, Langmore S, Kramer JH, Miller BL, Lomen-Hoerth C. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol. 2007;64:530–34.

    Article  PubMed  Google Scholar 

  224. Abe K, Fujimura H, Toyooka K, Sakoda S, Yorifuji S, Yanagihara T. Cognitive function in amyotrophic lateral sclerosis. J Neurol Sci. 1997;148:95–100.

    Article  PubMed  Google Scholar 

  225. Mase G, Ros S, Gemma A, et al. ALS with variable phenotypes in a six-generation family caused by leu144phe mutation in the SOD1 gene. J Neurol Sci. 2001;191:11–18.

    Article  PubMed  Google Scholar 

  226. Wicks P, Abrahams S, Papps B, et al. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J Neurol. 2009;256:234–41.

    Article  PubMed  Google Scholar 

  227. Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–19.

    Article  PubMed  Google Scholar 

  228. Raaphorst J, De Visser M, Linssen WH, De Haan RJ, Schmand B. The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotroph Lateral Scler. 2009; 1–13.

    Google Scholar 

  229. Abrahams S, Goldstein LH, Al-Chalabi A, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997;62:464–72.

    Article  PubMed  Google Scholar 

  230. Rippon GA, Scarmeas N, Gordon PH, et al. An observational study of cognitive impairment in amyotrophic lateral sclerosis. Arch Neurol. 2006;63:345–52.

    Article  PubMed  Google Scholar 

  231. Abrahams S, Goldstein LH, Simmons A, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain. 2004;127:1507–17.

    Article  PubMed  Google Scholar 

  232. Bak TH, Hodges JR. Motor neurone disease, dementia and aphasia: coincidence, co-occurrence or continuum? J Neurol. 2001;248:260–70.

    Article  PubMed  Google Scholar 

  233. Bak TH, O‘Donovan DG, Xuereb JH, Boniface S, Hodges JR. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain. 2001;124:103–20.

    Article  PubMed  Google Scholar 

  234. Grossman AB, Woolley-Levine S, Bradley WG, Miller RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007;8:56–61.

    Article  PubMed  Google Scholar 

  235. Mantovan MC, Baggio L, Dalla Barba G, et al. Memory deficits and retrieval processes in ALS. Eur J Neurol. 2003;10:221–27.

    Article  PubMed  Google Scholar 

  236. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999;53:1665–70.

    Article  PubMed  Google Scholar 

  237. Averill AJ, Kasarskis EJ, Segerstrom SC. Psychological health in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007;8:243–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Tröster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tröster, A.I., Woods, S.P. (2010). Neuropsychology of Movement Disorders and Motor Neuron Disease. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1364-7_17

Download citation

Publish with us

Policies and ethics