Skip to main content

Epilepsy and Cognitive Plasticity

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Epilepsy provided neuropsychology with the canonical cases of amnesia and episodic memory disorders. These cases strongly encouraged the development of modular conceptions of memory. As neuropsychology moves to develop non-modular, network approaches to cognition, it is ironic that epilepsy can be seen as providing clear, illustrative examples of a network disturbance in cognition. The key to understanding this shift in thinking is to grasp that the neural mechanism underlying network development (i.e., neuroplasticity) and the neuropathology of seizures are separated by little. Many of the neural mechanisms of learning are key factors in the regulation of seizures, and the highly plastic regions specialized for learning and memory are also prone to seizures. More than characterizing the effects of seizures, and determining the risks and outcomes of brain surgery, there are fundamental cognitive neuroscience reasons for the neuropsychologist to study epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–2.

    Article  PubMed  Google Scholar 

  2. McClelland JL. Failures to learn and their remediation: a hebbian account. In: McClelland JL, Seigler RS, editors. Mechanisms of cognitive development: behavioral and neural perspectives. Mahwah, NJ: Lawrence Erlbaum Associates; 2001. pp. 97–121.

    Google Scholar 

  3. Holmes GL, Lenck-Santini PP. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav. 2006;8:504–15.

    Article  PubMed  Google Scholar 

  4. Aldenkamp AP, Arends J, Overweg-Plandsoen TC, et al. Acute cognitive effects of nonconvulsive difficult-to-detect epileptic seizures and epileptiform electroencephalographic discharges. J Child Neurol. 2001;16:119–23.

    PubMed  Google Scholar 

  5. Thompson SM, Fortunato C, McKinney RA, Muller M, Gahwiler BH. Mechanisms underlying the neuropathological consequences of epileptic activity in the rat hippocampus in vitro. J Comp Neurol. 1996;372:515–28.

    Article  PubMed  Google Scholar 

  6. Del Vecchio N, Liporace J, Nei M, Sperling M, Tracy J. A dissociation between implicit and explicit verbal memory in left temporal lobe epilepsy. Epilepsia. 2004;45:1124–33.

    Article  PubMed  Google Scholar 

  7. Squires L, Knowlton B. The medial temporal lobe, the hippocampus, and the memory systems of the brain. In: Gazzaniga M, editor. The new cognitive neurosciences. 2nd ed. Cambridge, MA: MIT Press; 2000. pp. 765–79.

    Google Scholar 

  8. Helmstaedter C, Kurthen M, Linke DB, Elger CE. Patterns of language dominance in focal left and right hemisphere epilepsies: relation to MRI findings, EEG, sex, and age at onset of epilepsy. Brain Cogn. 1997;33:135–50.

    Article  PubMed  Google Scholar 

  9. Raol YS, Budreck EC, Brooks-Kayal AR. Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol. 2003;53:503–11.

    Article  PubMed  Google Scholar 

  10. Springer JA, Binder JR, Hammeke TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122 Pt 11:2033–46.

    Article  PubMed  Google Scholar 

  11. Jiang M, Lee CL, Smith KL, Swann JW. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J Neurosci. 1998;18:8356–68.

    PubMed  Google Scholar 

  12. Majak K, Pitkanen A. Do seizures cause irreversible brain damage? Evidence from animal studies. Epilepsy Behav. 2004;5:S35–44.

    Article  PubMed  Google Scholar 

  13. Farwell JR, Dodrill CB, Batzel LW. Neuropsychological abilities of children with epilepsy. Epilepsia. 1985;26: 395–400.

    Article  PubMed  Google Scholar 

  14. Ben-Ari Y, Crepel V, Represa A. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses. Epilepsy Curr. 2008;8:68–72.

    Article  PubMed  Google Scholar 

  15. Somera-Molina KC, Robin B, Somera CA, et al. Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia. 2007;48:1785–800.

    Article  PubMed  Google Scholar 

  16. Jacobs KM, Graber KD, Kharazia VN, Parada I, Prince DA. Postlesional epilepsy: the ultimate brain plasticity. Epilepsia. 2000;41 Suppl 6:S153–61.

    Article  PubMed  Google Scholar 

  17. Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog Brain Res. 2007;163:541–63.

    Article  PubMed  Google Scholar 

  18. Hellier JL, Patrylo PR, Dou P, Nett M, Rose GM, Dudek FE. Assessment of inhibition and epileptiform activity in the septal dentate gyrus of freely behaving rats during the first week after kainate treatment. J Neurosci. 1999;19:10053–64.

    PubMed  Google Scholar 

  19. Hannesson DK, Corcoran ME. The mnemonic effects of kindling. Neurosci Biobehav Rev. 2000;24:725–51.

    Article  PubMed  Google Scholar 

  20. Holtmaat A, De Paola V, Wilbrecht L, Knott GW. Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res. 2008;192:20–5.

    Article  PubMed  Google Scholar 

  21. Koh S, Chung H, Xia H, Mahadevia A, Song Y. Environmental enrichment reverses the impaired exploratory behavior and altered gene expression induced by early-life seizures. J Child Neurol. 2005;20: 796–802.

    Article  PubMed  Google Scholar 

  22. Dallison A, Kolb B. Recovery from infant medial frontal cortical lesions in rats is reversed by cortical lesions in adulthood. Behav Brain Res. 2003;146:57–63.

    Article  PubMed  Google Scholar 

  23. Binder DK, Croll SD, Gall CM, Scharfman HE. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 2001;24:47–53.

    Article  PubMed  Google Scholar 

  24. Aldenkamp AP, Bodde N. Behaviour, cognition and epilepsy. Acta Neurol Scand Suppl. 2005;182:19–25.

    Article  PubMed  Google Scholar 

  25. Schefft BK, Marc Testa S, Dulay MF, Privitera MD, Yeh HS. Preoperative assessment of confrontation naming ability and interictal paraphasia production in unilateral temporal lobe epilepsy. Epilepsy Behav. 2003;4:161–8.

    Article  PubMed  Google Scholar 

  26. Kim H, Yi S, Son EI, Kim J. Differential effects of left versus right mesial temporal lobe epilepsy on Wechsler intelligence factors. Neuropsychology. 2003;17:556–65.

    Article  PubMed  Google Scholar 

  27. Corcoran R, Thompson P. Epilepsy and poor memory: who complains and what do they mean? Br J Clin Psychol. 1993;32:199–208.

    Article  PubMed  Google Scholar 

  28. Hermann BP, Wyler AR, Richey ET. Wisconsin Card sorting test performance in patients with complex partial seizures of temporal-lobe origin. J Clin Exp Neuropsychol. 1988;10:467–76.

    Article  PubMed  Google Scholar 

  29. Martin R, Sawrie S, Edwards R, et al. Investigation of executive function change following anterior temporal lobectomy: selective normalization of verbal fluency. Neuropsychology. 2000;14:501–08.

    Article  PubMed  Google Scholar 

  30. Shulman MB. The frontal lobes, epilepsy, and behavior. Epilepsy Behav. 2000;1:384–95.

    Article  PubMed  Google Scholar 

  31. Strauss E, Hunter M, Wada J. Wisconsin card sorting performance: effects of age of onset of damage and laterality of dysfunction. J Clin Exp Neuropsychol. 1993;15:896–902.

    Article  PubMed  Google Scholar 

  32. Trenerry M, Jack C, Ivnik R. MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology. 1993;43:1800–05.

    Article  PubMed  Google Scholar 

  33. Cendes F, Andermann F, Dubeau F, Matthews PM, Arnold DL. Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Neurology. 1997;49:1525–33.

    Article  PubMed  Google Scholar 

  34. Finger S, Koehler PJ, Jagella C. The Monakow concept of diaschisis: origins and perspectives. Arch Neurol. 2004;61:283–8.

    Article  PubMed  Google Scholar 

  35. Hermann BP, Wyler AR, Steenman H, Richey ET. The interrelationship between language function and verbal learning/memory performance in patients with complex partial seizures. Cortex. 1988;24:245–53.

    PubMed  Google Scholar 

  36. Tracy JI, Shah S. Presurgical functional brain mapping and neurocognitive testing in epilepsy. In: Morgan JE, Sweets S, editors. Textbook in clinical neuropsychology. New York, NY: Taylor & Francis; 2007.

    Google Scholar 

  37. Khan N, Hajek M, Antonini A, et al. Cerebral metabolic changes (18F-FDG PET) during selective anterior temporal lobe amobarbital test. Eur Neurol. 1997;38:268–75.

    Article  PubMed  Google Scholar 

  38. Emerson RG, Turner CA, Pedley TA, Walczak TS, Forgione M. Propagation patterns of temporal spikes. Electroencephalogr Clin Neurophysiol. 1995;94:338–48.

    Article  PubMed  Google Scholar 

  39. Wieser HG, Hane A. Antiepileptic drug treatment in seizure-free mesial temporal lobe epilepsy patients with hippocampal sclerosis following selective amygdalohippocampectomy. Seizure. 2004;13:534–6.

    Article  PubMed  Google Scholar 

  40. Adam C, Saint-Hilaire JM, Richer F. Temporal and spatial characteristics of intracerebral seizure propagation: predictive value in surgery for temporal lobe epilepsy. Epilepsia. 1994;35:1065–72.

    Article  PubMed  Google Scholar 

  41. Cope DW, Hughes SW, Crunelli V. GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci. 2005;25:11553–63.

    Article  PubMed  Google Scholar 

  42. Acharya JN. Recent advances in epileptogenesis. Curr Sci. 2002;82:679–88.

    Google Scholar 

  43. Eliashiv SD, Dewar S, Wainwright I, Engel J Jr., Fried I. Long-term follow-up after temporal lobe resection for lesions associated with chronic seizures. Neurology. 1997;48:1383–8.

    Article  PubMed  Google Scholar 

  44. Cibula JE, Gilmore RL. Secondary epileptogenesis in humans. J Clin Neurophysiol. 1997;14:111–27.

    Article  PubMed  Google Scholar 

  45. Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214: 1020–1.

    Article  PubMed  Google Scholar 

  46. Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci. 1990;13:312–8.

    Article  PubMed  Google Scholar 

  47. Sutula TP. Secondary epileptogenesis, kindling, and intractable epilepsy: a reappraisal from the perspective of neural plasticity. Int Rev Neurobiol. 2001;45:355–86.

    Article  PubMed  Google Scholar 

  48. Devinsky O, Barr WB, Vickrey BG, et al. Changes in depression and anxiety after respective surgery for epilepsy. Neurology. 2005;65:1744–9.

    Article  PubMed  Google Scholar 

  49. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci. 1977;299:355–69.

    Article  PubMed  Google Scholar 

  50. Braun M, Finke C, Ostendorf F, Lehmann TN, Hoffmann KT, Ploner CJ. Reorganization of associative memory in humans with long-standing hippocampal damage. Brain. 2008;131:2742–50.

    Article  PubMed  Google Scholar 

  51. Tracy JI, Waldron B, Glosser D, et al. Hemispheric lateralization and language skill coherence in temporal lobe epilepsy. Cortex. 2009;45 10:1178–89.

    Article  PubMed  Google Scholar 

  52. Shimizu T, Nariai T, Maehara T, et al. Enhanced motor cortical excitability in the unaffected hemisphere after hemispherectomy. Neuroreport. 2000;11:3077–84.

    Article  PubMed  Google Scholar 

  53. Bittar RG, Ptito A, Reutens DC. Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study. J Neurosurg. 2000;92:45–51.

    Article  PubMed  Google Scholar 

  54. Jokeit H, Ebner A, Holthausen H, Markowitsch HJ, Tuxhorn I. Reorganization of memory functions after human temporal lobe damage. Neuroreport. 1996;7: 1627–30.

    Article  PubMed  Google Scholar 

  55. Thivard L, Hombrouck J, du Montcel ST, et al. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage. 2005;24:841–51.

    Article  PubMed  Google Scholar 

  56. Osipowicz K, Iloreta S, Sharan A, et al. An investigation of verbal fluency network changes following temporal lobectomy for epilepsy. In: Pietrini P, Bookheimer S, Clark V, editors. The 15th annual meeting of the organization for human brain mapping, 2009 June 20th. San Francisco, CA: Neuroimage; 2009. p. S97.

    Google Scholar 

  57. Pataraia E, Simos PG, Castillo EM, et al. Reorganization of language-specific cortex in patients with lesions or mesial temporal epilepsy. Neurology. 2004;63:1825–32.

    Article  PubMed  Google Scholar 

  58. Chelune GJ, Naugle RI, Hermann BP, et al. Does presurgical IQ predict seizure outcome after temporal lobectomy? Evidence from the Bozeman Epilepsy Consortium. Epilepsia. 1998;39:314–8.

    Article  PubMed  Google Scholar 

  59. Drager B, Breitenstein C, Helmke U, Kamping S, Knecht S. Specific and nonspecific effects of transcranial magnetic stimulation on picture-word verification. Eur J Neurosci. 2004;20:1681–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was made possible, in part, by NINDS R21 NS056071-01A1 to J.I. Tracy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph I. Tracy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tracy, J.I., Lippincott-Stamos, C., Osipowicz, K., Berman, A. (2010). Epilepsy and Cognitive Plasticity. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1364-7_1

Download citation

Publish with us

Policies and ethics