Heavy Metals Alter the Potency of Medicinal Plants

  • Sekh Abdul NasimEmail author
  • Bhupinder Dhir
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 203)


Heavy metals, accumulated naturally in soil, surface water or through industrial and mining processes, pose a potential threat to various terrestrial and aquatic organisms (Greeger 1999; Larison et al. 2000; Dwivedi and Dey 2002; Hsu et al. 2006; Dhir et al. 2008). Exposure to high metal concentrations impinges on the growth and development of plants (Rout and Das 2003; Shanker et al. 2005; Dhir et al. 2009). Such growth effects result from alterations in physiological events such as photosynthesis, respiration, changes in lipid composition, enzyme activity, and distribution of macro and micronutrients at the cellular level (Sheoran et al. 1990; Van Assche and Clijsters 1990; Rout and Das 2003; Shanker et al. 2005). Research also suggests that abiotic factors such as heavy metals may alter the production of bioactive compounds by changing aspects of secondary metabolism (Verpoorte et al. 2002).


Heavy Metal Secondary Metabolite Heavy Metal Contamination Heavy Metal Stress Secondary Metabolite Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial assistance from Department of Science and Technology, New Delhi, to Bhupinder Dhir is gratefully acknowledged.


  1. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42: 599–603.CrossRefGoogle Scholar
  2. Celechovska O, Pizova M, Konickova J (2004) The content of zinc and cadmium in medicinal plants and their infusions. Ceska Slov Farm 53: 336–339.Google Scholar
  3. Chan K (2003) Some aspects of toxic contaminants in herbal medicines. Chemosphere 52: 1361–1371.CrossRefGoogle Scholar
  4. Chizzola R, Lukas B (2006) Variability of the cadmium content in Hypericum species collected in Eastern Austria. Water Air Soil Pollut 170: 331–343.CrossRefGoogle Scholar
  5. Chunilall V, Kindness A, Jonnalagadda SB (2005) Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. J Environ Sci Health B 40: 375–384.CrossRefGoogle Scholar
  6. Cobbett CS, Goldsbrough PB (2000) Metal accumulating plants. In: Raskin Y, Ensley B (eds) Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Willey, Toronto, pp 247–270.Google Scholar
  7. Das K, Dang R, Shivananda TN, Sur P (2005) Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant Stevia (Stevia rebaudiana). Sci World J 10: 390–395.Google Scholar
  8. Dhir B, Sharmila P, Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20(1): 61–70.CrossRefGoogle Scholar
  9. Dhir B, Sharmila P, Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to Chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797.Google Scholar
  10. Dwivedi SK, Dey S (2002) Medicinal herbs: A potential source of toxic metal exposure for man and animals in India. Arch Environ Health 57: 229–233.CrossRefGoogle Scholar
  11. El-Rjoob AWO, Massadeh AM, Omari MN (2008) Evaluation of Pb, Cu, Zn, Cd, Ni and Fe levels in Rosmarinus officinalis Labaiatae (Rosemary) medicinal plants and soils in selected zones in Jordan. Environ Monit Assess 140: 61–68.CrossRefGoogle Scholar
  12. Eliasova A, Repca KM, Pastırova A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Verlag der Zeitschrift für Naturforschung, Tübingen.
  13. Eman A, Gad N, Badran N M (2007) Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L.. Aus J Basic Appl Sci 1: 73–78.Google Scholar
  14. Farmer EE, Alme´ras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6: 372–378.CrossRefGoogle Scholar
  15. Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Whitehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep 10: 111–114.CrossRefGoogle Scholar
  16. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Functional Plant Biol 32: 481–494.CrossRefGoogle Scholar
  17. Greeger M (1999) Metal availability and bioconcentration in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy Metal Stress in Plants. Springer, New York, pp 1–29.Google Scholar
  18. Grejtovsky A, Markusova K, Eliasova A (2006) The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply. Plant Soil Environ 52: 1–7.Google Scholar
  19. Grejtovsky A, Repcak M, Eliasova A, Markusova K (2001) Effect of cadmium on active principle contents of Matricaria recutita L. Herba Pol 47: 203–208.Google Scholar
  20. Guo XH, Gao WY, Chen HX, Huang LQ (2005) Effects of mineral cations on the accumulation of tanshinone II A and protocatechuic aldehyde in the adventitious root culture of Salvia niltiorrhiza. Zhongguo Zhong Yao Za Zhi 30: 885–888.Google Scholar
  21. Haider S, Naithani V, Barthwal J, Kakkar P (2004) Heavy metal content in some therapeutically important medicinal plants. Bull Environ Contam Toxicol 72: 119–127.CrossRefGoogle Scholar
  22. Hsu MJ, Selvaraj K, Agoramoorthy G (2006) Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ Pollut 143: 327–334.Google Scholar
  23. Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresour Technol 76: 9–13.CrossRefGoogle Scholar
  24. Jiang SY, Sun H, Wu XC, Zhou Y, Ma XJ, Wu R (2006) Analysis and quality assessment standard of heavy metals and arsenic in Rhizoma et Radix Notopterygii from different localities. Zhongguo Zhong Yao Za Zhi 31: 978–980.Google Scholar
  25. Jonnalagadda SB, Kindness A, Kubayi S, Cele MN (2008) Macro, minor and toxic elemental uptake and distribution in Hypoxis hemerocallidea, “The African Potato”—an edible medicinal plant. J Environ Sci Health B 43: 271–280.CrossRefGoogle Scholar
  26. Kartosentono S, Suryawati S, Indrayanto G, Zaini NC (2002) Accumulation of Cd2+ and Pb2+ in the suspension cultures of Agave amaniensis and Costus speciosus and the determination of the culture’s growth and phytosteroid content. Biotechnol Lett 24: 687–690.CrossRefGoogle Scholar
  27. Kasparova M, Siatka T (2004) Abiotic elicitation of the explant culture of Rheum palmatum L. by heavy metals. Ceska Slov Farm 53: 252–255.Google Scholar
  28. Khan MA, Ahmad I, Rahman I (2007) Effect of environmental pollution on heavy metals content of Withania somnifera. J Chinese Chem Soc 54: 339–343.Google Scholar
  29. Kim D, Pedersen H, Chin C (1991) Stimulation of berberine production in Thalictrum rugosum suspension cultures in response to addition of cupric sulfate. Biotechnol Lett 13: 213–216.CrossRefGoogle Scholar
  30. Kovacik J, Tomko J, Backor M, Repcak M (2006) Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul 50: 239–247.CrossRefGoogle Scholar
  31. Krejpcio Z, Krol E, Sionkowski S (2007) Evaluation of heavy metals contents in spices and herbs available on the Polish market. Polish J Environ Stud 16: 97–100.Google Scholar
  32. Kumar S, Narula A, Sharma MP, Srivastava PS (2004) In vitro propagation of Pluchea lanceolata, a medicinal plant, and effect of heavy metals and different aminopurines on quercetin content. In Vitro Cell Dev Biol Plant 40: 171–176.CrossRefGoogle Scholar
  33. Larison JR, Likens E, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado rocky mountains. Nature 406: 181–183.CrossRefGoogle Scholar
  34. Lee KT, Yamakawa T, Kodama T, Shimomura K (1998) Effects of chemicals on alkaloid production by transformed roots of belladonna. Phytochem 49: 2343–2347.CrossRefGoogle Scholar
  35. Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 23: 2316–2321.CrossRefGoogle Scholar
  36. Maksymiec W (2007) Signaling response in plants to heavy metal stress. Acta Physiol Plant 29: 177–187.CrossRefGoogle Scholar
  37. Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162: 1338–1346.CrossRefGoogle Scholar
  38. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15: 523–530.Google Scholar
  39. Mishra C, Sharma S, Kakkar P (2007) A study to evaluate heavy metals and organochlorine pesticide residue in Zingiber officinale Rosc. collected from different ecological zones of India. Bull Environ Contam Toxicol 79: 95–98.CrossRefGoogle Scholar
  40. Misra A (1992) Effect of zinc stress in Japanese mint as related to growth, photosynthesis, chlorophyll content and secondary plant products – the monoterpenes. Photosynthetica 26: 225–234.Google Scholar
  41. Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Lett 566: 1–5.CrossRefGoogle Scholar
  42. Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49: 251–257.CrossRefGoogle Scholar
  43. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Rev 1: 69–79, Scholar
  44. Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus – A phytoremediation study. J Environ Biol 28: 655–662.Google Scholar
  45. Pichersky D, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci 5: 439–445.CrossRefGoogle Scholar
  46. Pitta-Alvarez S I, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microbial Technol 26: 252–258.CrossRefGoogle Scholar
  47. Rai V, Agnihotri AK, Khatoon S, Rawat AK, Mehrotra S (2005a) Chromium in some herbal drugs. Bull Environ Contam Toxicol 74: 464–769.Google Scholar
  48. Rai V, Khatoon S, Bisht SS, Mehrotra S (2005b) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61: 1644–1650.Google Scholar
  49. Rai V, Khatoon S, Rawat AK, Mehrotra S (2007) Disruption of elements uptake due to excess chromium in Indian medicinal plants. Biol Trace Element Res 120: 127–132.CrossRefGoogle Scholar
  50. Rai V, Mehrotra S (2008) Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthus amarus Schum & Thonn. – an hepatoprotective plant. Environ Monit Assess 147: 307–315.CrossRefGoogle Scholar
  51. Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167: 1159–1169.CrossRefGoogle Scholar
  52. Rakwal R, Tomogami S, Kodama O (1996) Role of jasmonic acid as a signalling molecule in copper chloride-elicited rice phytoalexein production. Biosci Biotechnol Biochem 60: 1046–1048.CrossRefGoogle Scholar
  53. Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism. I Zinc Agronomie 23: 3–11.CrossRefGoogle Scholar
  54. Sanita di Toppi L, Gabbrielli R (1999) Response to Cd in higher plants. Environ Exp Bot 41: 105–130.CrossRefGoogle Scholar
  55. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31: 739–753.CrossRefGoogle Scholar
  56. Sheoran I, Singal H, Singh R (1990) Effect of cadmium and nickel on photosynthesis and enzymes of the photosynthetic carbon reduction cycle in the pigeon pea (Cajanus cajan). Photosynth Res 23: 345–351.CrossRefGoogle Scholar
  57. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62: 233–246.CrossRefGoogle Scholar
  58. Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-content in medicinal plant Bacopa monnieri L. Chemosphere 62: 1340–1350.CrossRefGoogle Scholar
  59. Srivastava SK, Rai V, Srivastava M, Rawat AK, Mehrotra S (2006) Estimation of heavy metals in different Berberis species and its market samples. Environ Monit Assess 116: 315–320.CrossRefGoogle Scholar
  60. Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to hyacinthaceae. Bull Environ Contam Toxicol 79: 371–376.CrossRefGoogle Scholar
  61. Thangavel P, Sulthana AS, Subburam V (1999) Interactive effects of selenium and mercury on the restoration potential of leaves of the medicinal plant, Portulaca oleracea Linn. Sci Total Environ 243: 1–8.CrossRefGoogle Scholar
  62. Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi V (2006) Induction of hypericin in Hypericum perforatum in response to chromium. Fitoterapia 77: 164–170.CrossRefGoogle Scholar
  63. Tumova V, Blazkova R (2002) Effect on the formation of flavonoids in the culture of Ononis arvensis L. in vitro by the action of CrCl3. Ceska a Slovenska Farmacie 51: 44–46.Google Scholar
  64. Tumova L, Poustkova J, Tuma V (2001) CoCl2 and NiCl2 elicitation and flavonoid production in Ononis arvensis L. culture in vitro. Acta Pharmaceutica 51: 159–162.Google Scholar
  65. Turner JG, Ellis Ch, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14: 153–164.Google Scholar
  66. Van Assche F, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206.CrossRefGoogle Scholar
  67. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1: 13–25.CrossRefGoogle Scholar
  68. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5: 218.CrossRefGoogle Scholar
  69. Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70: 147–151.CrossRefGoogle Scholar
  70. Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci 166: 507–514.CrossRefGoogle Scholar
  71. Zhu L, Cullen WR (1995) Effects of some heavy metals on cell suspension cultures of Catharanthus roseus. J Environ Sci 7: 60–65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Environmental Biotechnology LaboratoryHamdard UniversityNew DelhiIndia
  2. 2.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations