Advertisement

Dermal Toxicity and Environmental Contamination: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Cell Signaling, and Protection by Antioxidants

  • Peter KovacicEmail author
  • Ratnasamy Somanathan
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 203)

Abstract

Many papers have addressed the role of electron transfer (ET) (electron movement from one site to another), reactive oxygen species (ROS), and oxidative stress (OS) in producing cellular insults and, thereby, toxicity in major organs. The present review provides evidence for the same mechanistic theme as it applies to skin toxicants.

Keywords

Reactive Oxygen Species Electron Transfer Methyl Salicylate Redox Cycling Methyl Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Assistance by Dr. Terence O’Grady, UCSD, as well as by Thelma Chavez, is gratefully acknowledged.

References

  1. Adler ID, Gonda H, De Angelis M, Jentsch I, Otten IS, Speicher MR (2004) Heritable translocations induced by dermal exposure of male mice to acrylamide. Cytogenic Genome Res 104: 271–276.CrossRefGoogle Scholar
  2. Bagchi D, Stohs SJ, Downs B, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180: 5–22.CrossRefGoogle Scholar
  3. Bell AJ, Duggin G (2002) Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis. Emerg Med (Fremantle) 14: 188–190.CrossRefGoogle Scholar
  4. Bergström MA, Luthman K, Karlberg A-T (2007) Metabolic epoxidation of an α,β-unsaturated oxime generates sensitizers of extreme potency. Are nitroso intermediates responsible? Chem Res Toxicol 20: 927–936.CrossRefGoogle Scholar
  5. Bernstein EF (2002) Reactive oxygen species activate the human elastin promoter in a transgenic model of cutaneous photoaging. Dermatol Surg 28: 132–135.CrossRefGoogle Scholar
  6. Bernstein EF, Kong SK, Brown DB, Kiwak BC, Takechi T, Gasparro FP, Uitto J (2001) The nitroxide Tempol affords protection against ultraviolet radiation in a transgenic murine fibroblast culture model of cutaneous photoaging. Exp Dematol 10: 55–61.CrossRefGoogle Scholar
  7. Bezard M, Gilmenez-Arnau E, Meurer B, Grossi L, Lepoittevin JP (2005) Identification of carbon-centered radicals derived from linalyl hydroperoxide, a strong skin sensitizer: A possible route for protein modifications. Bioorg Med Chem 13: 3977–3986.CrossRefGoogle Scholar
  8. Brezová V, Gabčová S, Dvoranová D, Stasko A (2005) Reactive oxygen species produced upon photoexcitation of sunscreen containing titanium dioxide (an EPR study). J Photochem Photobiol B: Biology 79: 121–134.CrossRefGoogle Scholar
  9. Briganti S, Picardo M (2003) Antioxidant activity, lipid peroxidation and skin diseases. J Europ Acad Dermatol Venereol 17: 663–669.CrossRefGoogle Scholar
  10. Burlaka AP, Sidorik YP, Prylutska SV, Matyshervska AP, Golub OA, Prylutskyy YI, Scharff P (2004) Catalytic system of the reactive oxygen species on the C60 fullerene basis. Exp Oncol 26: 326–327.Google Scholar
  11. Cai Y, Ma Q, Zhao J, Zhu M, Chen Z (2004) The mechanism of mustard gas poisoning and methods for prevention and cure. Weisheng Dulixue Zazhi 18: 118–120.Google Scholar
  12. Calbrese V, Scapagnini G, Catalano C, Donott F, Geraci D, Morganti P (2000) Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int J Tissue React 22: 5–13.Google Scholar
  13. Cavalieri EL, Eleanor G, Li K-M, Todorvic R, Ariese F, Jankowiak R, Grubor N, Small GJ (2005) Identification and quantification of the depurinating DNA adducts formed in mouse skin treated with dibenzo[a,l]pyrene (DB[a,l] or its metabolites and in rat mammary gland treated with DB[a,l]P). Chem Res Toxicol 18: 976–983.CrossRefGoogle Scholar
  14. Dammak I, Ben Abdallah F, Budaya S, Sonia B, Souhail K, Leila ElG, Amel T, Hamida A, Hammadi H, Hentati B (2007) Date seed oil limits oxidative injuries induced by hydrogen peroxide in human skin organ culture. Biofactors 29: 137–145.CrossRefGoogle Scholar
  15. Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissue; role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22: 157–173.Google Scholar
  16. Daugherty JP, Khurana A (1985) Amelioration of doxorubicin-induced skin necrosis in mice by butylated hydroxytoluene. Cancer Chemother Pharmacol 14: 243–246.CrossRefGoogle Scholar
  17. Dunn IS, Liberato DJ, Castagnoli N Jr, Byers VS (1986) Influence of chemical reactivity of urushiol-type haptens on sensitization and the induction of tolerance. Cell Immunol 97: 189–196.CrossRefGoogle Scholar
  18. Dupuis G (1979) Studies on poison ivy. In vitro lymphocyte transformation by urushiol-protein conjugates. Br J Dermatol 101: 617–624.CrossRefGoogle Scholar
  19. D’Agostini F, Balansky RM, Camoirano A, De Flora S (2005) Modulation of light-induced skin tumors by N-acetlycysteine and/or ascorbic acid in hairless mice. Carcinogenesis 26:657–664.CrossRefGoogle Scholar
  20. El-Khouly ME (2007) Photoinduced intermolecular electrón transfer process of fullerene (C60) and amine-substituted fluorenes studied by laser photolysis. Spectrochim Acta A Mol Biomol Spectros 67: 3–4.Google Scholar
  21. Fischer TW, Scholz G, Knöll B, Hipler UC, Elsner P (2001) Melatonin reduces UV-induced reactive oxygen species in a dose-dependent manner in IL-3-stimulated leukocytes. J Pineal Res 31: 39–45.CrossRefGoogle Scholar
  22. Fuchs J, Packer L (1993) Oxidative Stress in Dermatology. Marcel Dekker, New York.Google Scholar
  23. Fuchs J, Zollner TM, Kaufmann R, Podda M (2001) Redox-modulated pathways in inflammatory skin diseases. Free Rad Biol Med 30: 337–353.CrossRefGoogle Scholar
  24. Gaigl Z, Seitz CS, Brocker EB, Trautmann A (2007) Methotrexate-induced toxic epidermal necrolysis-like skin toxicity. Eur J Dermatol 17: 168–169.Google Scholar
  25. Ganyc D, Talbot S, Konate F, Fanta J, Sarah B, Cullen W, Self WT (2007) Impact of trivalent arsenicals on selenoprotein synthesis. Environ Health Perspec 115: 346–353.CrossRefGoogle Scholar
  26. Gao D, Luo Y, Guevara D, Wang Y, Rui M, Goldwyn B, Lu Y, Smith ECA, Lebwohl M, Wei H (2005) Benzo[1]pyrene and its metabolites, combined with ultraviolet A synergistically induce 8-hydroxy-2’-deoxyguanosine via reactive oxygen species. Free Rad Biol Med 39:1177–1183.CrossRefGoogle Scholar
  27. Ha MK, Chung KY, Bang D, Dongsik P, Yoon K, Lee KH (2005) Proteomic analysis of the proteins expressed by hydrogen peroxide treated cultured human dermal microvascular endothelial cells. Proteomics 5: 1507–1519.CrossRefGoogle Scholar
  28. Hagvall L, Bäcktorp C, Svensson S, Nyman G, Boerje A, Karlberg A-T (2007) Fragrance compound geraniol forms contact allergens on air exposure. Identification and quantification of oxidation products and effect on skin sensitization. Chem Res Toxicol 20: 807–814.CrossRefGoogle Scholar
  29. Halford B (2005) Antibacterial C60 fullerene aggregates that form in water could have an impact on ecosytem. Chem Eng News 83: 11.Google Scholar
  30. Halliwell B, Gutteridge JMC (2000) Free Radicals in Biology and Medicine. Oxford University Press, New York.Google Scholar
  31. Hanausek M, Walaszek Z, Viaje A, LaBate M, Spears E, Farrell D, Herich R, Tveit A, Walborg EF Jr, Slaga TJ (2004) Exposure of mouse skin to organic peroxides: Subchronic effects related to carcinogenic potential. Carcinogenesis 25: 431–437.CrossRefGoogle Scholar
  32. Hansen MB, Johansen JD, Menne T (2003) Chromium allergy: Significance of both Cr(III) and Cr(VI). Contact Derm 49: 206–212.CrossRefGoogle Scholar
  33. Harada D, Takada C, Tsukumo Y, Takaba K, Manabe H (2005) Analyses of a mouse model of the dermatitis caused by 2,4,6-trinitro-1-chlorobenzene (TNCB)-repeated application. J Dermatol Sci 37: 159–167.CrossRefGoogle Scholar
  34. Harris GK, Shi X (2003) Signaling by carcinogenic metals and metal-induced reactive oxygen species. Mutat Res Fund Molec Mech Mutagen Saf Health 533: 183–200.CrossRefGoogle Scholar
  35. Hiraku H, Ito K, Hirakawa K, Kawanishi S (2007) Photosensitized DNA damage and its protection via novel mechanism. Photochem Photobiol 83: 205–212.CrossRefGoogle Scholar
  36. Hostynek JJ, Reagan KE, Maibach HI (2002) Release of nickel ion from the metal and its alloys as cause of nickel allergy. In: Nickel and the Skin. Hostynek JJ, Reagan KE, Maibach HI (eds). CRC Press LLC, Boca Raton, 99–145.Google Scholar
  37. Humbert PG, Haftek M, Creidi P, Lapiere PG, Nusgens B, Richard A, Schmitt D, Rougier A, Zahouani H (2003) Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: Double-blind study vs. placebo. Exp Dermatol 12: 237–244.CrossRefGoogle Scholar
  38. Ichihashi M, Ahmed NU, Budiyanto A, Wu A, Bito T, Ueda M, Osawa T (2000) Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J Dermatol Sci 23: S45–S50.CrossRefGoogle Scholar
  39. Inal ME, Kahraman A, Köken T (2001) Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin Exp Dermatol 26: 536–539.CrossRefGoogle Scholar
  40. Inbaraj JJ, Chignell CF (2004) Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17: 55–62.CrossRefGoogle Scholar
  41. Jacintho JD, Kovacic P (2003) Neurotransmission and neurotoxicity by nitric oxide, catecholamines and glutamate: unifying themes of reactive oxygen species and electron transfer. Curr Med Chem 10: 2693–2704.CrossRefGoogle Scholar
  42. Jackson MJ, McArdle F, Storey A, Jones SA, McArdie A, Rhodes LE (2002) Effects of micronutrient supplements on UV-induced skin damage. Proc Nutr Soc 61: 187–189.CrossRefGoogle Scholar
  43. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicol 155: 55–61.CrossRefGoogle Scholar
  44. Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res Fundam Molec Mech Mutagen 533: 67–97.CrossRefGoogle Scholar
  45. Katiyar SK, Afaq F, Perez A, Mukhtar H (2001) Green tea polyphenol (-)-epigallocatechin treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22: 287–294.CrossRefGoogle Scholar
  46. Kim JK, Kim Y, Na K-M, Surh Y-J, Kim T-Y (2007) Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Rad Res 41: 603–614.CrossRefGoogle Scholar
  47. Kim RJ, Peterson G, Kulp B, Barbara Z, Kristine M, Markman M (2005) Skin toxicity associated with pegylated liposomal doxorubicin (40 mg/m2) in the treatment of gynecologic cancers. Gynecol Oncol 97: 374–378.CrossRefGoogle Scholar
  48. Kleiner HE, Vulimiri SV, Hatten WB, Kleiner HE, Reed M, Nebert DW, Jefcoate CR, DiGiovanni J (2004) Role of cytochrome P4501 family members in the metabolic activation of polycyclic aromatic hydrocarbons in mouse epidermis. Chem Res Toxicol 17:1667–1674.CrossRefGoogle Scholar
  49. Köhler HBK, Huchzermeyer B, Martin M, De Bruin A, Meier B, Nolte I (2001) TNF-α dependent NF-kB activation in cultured canine keratinocytes is partly mediated by reactive oxygen species. Veter Dermatol 12: 129–137.CrossRefGoogle Scholar
  50. Konaka R, Kashara E, Dunlap WC, Yamamoto Y, Chien KC, Inoue M (1999) Irradiation of titanium dioxide generation of both singlet oxygen and superoxide anion. Free Rad Biol Med 27: 294–305.CrossRefGoogle Scholar
  51. Korać B, Buzadzić B (2001) Doxorubicin toxicity to the skin: Possibility of protection with antioxidants enriched yeast. J Dermatol Sci 25: 45–52.CrossRefGoogle Scholar
  52. Kovacic P (2008) Bioelectrostatics. Widespread importance in biochemistry. Focus on energetics. J Electrostat 66: 124–129.CrossRefGoogle Scholar
  53. Kovacic P, Becvar LE (2000) Mode of action of anti-infective agents: Emphasis on oxidative stress and electron transfer. Curr Pharmaceut Des 6: 143–167.CrossRefGoogle Scholar
  54. Kovacic P, Cooksy AL (2005a) Unifying mechanism for toxicity and addiction by abused drugs: Electron transfer and reactive oxygen species. Med Hypotheses 64: 357–366.CrossRefGoogle Scholar
  55. Kovacic P, Cooksy AL (2005b) Role of diacetyl metabolite in alcohol toxicity and addiction via electron transfer and oxidative stress. Arch Toxicol 79: 123–128.CrossRefGoogle Scholar
  56. Kovacic P, Draskovich CD, Pozos RS (2007b) Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. J Recept Signal Transduct 27: 433–443.CrossRefGoogle Scholar
  57. Kovacic P, Jacintho JD (2001a) Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr Med Chem 8: 773–796.Google Scholar
  58. Kovacic P, Jacintho JD (2001b) Reproductive toxins: Pervasive theme of oxidative stress and electron transfer. Curr Med Chem 8: 863–892.Google Scholar
  59. Kovacic P, Osuna JA (2000) Mechanisms of anticancer agents: Focus on oxidative stress and electron transfer. Curr Pharmaceut Des 6: 277–309.CrossRefGoogle Scholar
  60. Kovacic P, Pozos RS (2007a) Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implications. Birth Defects Res C 78: 333–344.CrossRefGoogle Scholar
  61. Kovacic P, Pozos RS (2007b) Bioelectronome. Integrated approach to receptor chemistry, radicals, electrochemistry, cell signaling and physiological effects based on electron transfer. J Recept Signal Transduct 27: 261–294.CrossRefGoogle Scholar
  62. Kovacic P, Pozos RS, Draskovich CD (2007a) Unifying electrostatic mechanism for receptor-ligand activity. J Recept Signal Transduct 27: 411–431.CrossRefGoogle Scholar
  63. Kovacic P, Pozos RS, Somanathan R, Shangari R, O’Brien PJ (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 5: 2601–2623.CrossRefGoogle Scholar
  64. Kovacic P, Sacman A, Wu-Weis M (2002) Nephrotoxins: Widespread role of oxidative stress and electron transfer. Curr Med Chem 9: 823–847.CrossRefGoogle Scholar
  65. Kovacic P, Somanathan R (2005) Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem-CNS Agents 5: 249–258.CrossRefGoogle Scholar
  66. Kovacic P, Somanathan R (2006) Beneficial effects of antioxidants in relation to carcinogens, toxins and various illnesses. In: Frontiers in Antioxidant Research. Panglossi HV (ed). Nova Science Publishers, Hauppauge, 1–37.Google Scholar
  67. Kovacic P, Somanathan R (2007) Mechanism of tumorigenesis: Focus on oxidative stress, electron transfer and antioxidants. In: Tumorigenesis Research Advances. Wong DK (ed). Nova Science Publishers Inc., New York, 23–65.Google Scholar
  68. Kovacic P, Somanathan R (2008) Ototoxicity and noise trauma: Electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: Practical medical aspects. Med Hypotheses 70: 914–923.CrossRefGoogle Scholar
  69. Kovacic P, Thurn LA (2005) Cardiovascular toxins from the perspective of oxidative stress and electron transfer. Curr Vasc Pharmacol 3: 107–117.CrossRefGoogle Scholar
  70. Kulms D, Zeise E, Pöppelmann B, Schwarz T (2002) DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene 21: 5844–5851.CrossRefGoogle Scholar
  71. Leveque N, Robin S, Muret P, Mac-Mary S, Makki S, Humbert P (2003) High iron and low ascorbic acid concentrations in the dermis of atopic dermatitis patients. Deramtology 207: 261–264.CrossRefGoogle Scholar
  72. Li J, Chen H, Ke Q, Feng Z, Tang M-S, Liu B, Amin S, Costa ML, Bingci A, Shantu C, Huang C (2004) Differential effects of polycyclic aromatic hydrocarbons on transactivation of AP-1 and NK-kB in mouse epidermal C141 cells. Molec Carcinogen 40: 104–115.CrossRefGoogle Scholar
  73. Liberato DJ, Byers VS, Dennick RG, Castagnoli N Jr (1981) Regiospecific attack of nitrogen and sulfur nucleophiles on quinones from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation. J Med Chem 24: 28–33.CrossRefGoogle Scholar
  74. Lifshitz M, Gavrilov V (2000) Central nervous system toxicity and early peripheral neuropathy following dermal exposure to methyl bromide. J Toxicol Clin Toxicol 38: 799–801.CrossRefGoogle Scholar
  75. Maccarrone M, Catani MV, Iraci S, Melino G, Agrp AF (1997) A survey of reactive oxygen species and their role in dermatology. J Europ Acad Dermatol Venereol 8: 185–202.CrossRefGoogle Scholar
  76. Masafumi T, Azumi H, Takaaki N, Katsuoka F, Noda S, Mimura J, Hosoya T, Yanaka A, Aburatani H, Fujii-Kuriyama Y, Motohashi H, Yamamoto M (2005) Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Molec Cellul Biol 25: 9360–9368.CrossRefGoogle Scholar
  77. Matijasevic Z, Precopio ML, Snyder JE, Ludlum DBL (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by host cell reactivation assay. Carcinogenesis 22: 661–664.CrossRefGoogle Scholar
  78. Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, Mummert ME, Oeda J, Masayasu H, Takashima A (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171: 3010–3018.Google Scholar
  79. Nair J, Fürstenberger G, Bürger F, Marks F, Bartsch H (2000) Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: Correlation with lipoxygenase-catalyzed arachidonic acid metabolism. Chem Res Toxicol 13: 703–709.CrossRefGoogle Scholar
  80. Nishigori C, Hattori Y, Shinya T (2004) Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 6: 561–570.CrossRefGoogle Scholar
  81. Niwa Y, Sumi H, Kawahira K, Terashima T, Nakamura T, Akamatsu H (2003) Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. British J Dermatol 149:248–254.CrossRefGoogle Scholar
  82. Ouédraogo GD, Redmond RW (2003) Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization. Photochem Photobiol 77: 192–203.Google Scholar
  83. Ozkur MK, Bozkurt MS, Balabanli B, Balabanli B, Aricioglu A, Ilter N, Gürer MA, Inalöz HS (2002) The effects of EGb 761 on lipid peroxide levels and superoxide dismutase activity in sunburn. Photoderamtol Photoimmunol Photomed 18: 117–120.CrossRefGoogle Scholar
  84. Pelle E, Mammone T, Maes D, Maes D, Frenkel K (2005) Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J Invest Dermatol 124: 793–797.CrossRefGoogle Scholar
  85. Peus D, Meves A, Pott M, Beyerle A, Pittelkow MR (2001) Vitamin E analog modulates UVB-induced signaling pathway activation and enhances cell survival. Free Rad Biol Med 30: 425–432.CrossRefGoogle Scholar
  86. Pillai S, Costello B, Bell S (2006) Nordihydroguaiaretic acid (NDGA): A powerful antioxidant and anti-inflammatory ingredient for skin care applications. Fragrance J 34: 61–64.Google Scholar
  87. Podda M, Grundmann-Kollmann M (2001) Low molecular weight antioxidants and their role in skin ageing. Clin Exp Dermatol 26: 578–582.CrossRefGoogle Scholar
  88. Podda M, Zollner TM, Grundmann-Kollmann M, Marcella T, Jens J, Packer L, Kaufman R (2001) Activity of alpha-lipoic acid in the protection against oxidative stress in skin. Curr Prob Dermatol 29: 43–51.CrossRefGoogle Scholar
  89. Poli G, Cheeseman KN, Dianzani MU, Slatter TF (1989) Free Radicals in the Pathogenesis of Liver Injury. Pergamon, New York.Google Scholar
  90. Psotova J, Svobodova A, Kolarova H, Walterova D (2006) Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. J Photochem Photobiol B: Biology 84: 167–174.CrossRefGoogle Scholar
  91. Rhodes CJ (2000) Toxicology of the Human Environment: The Critical Role of Free Radicals. Taylor Francis, London.Google Scholar
  92. Roberts MJ, Wondrak GT, Laurean DP, Jacobson MK, Jacobson EL (2003) DNA damage by carbonyl stress in human skin cells. Mutat Res Fundam Mol Mech Mutagen 522: 45–56.CrossRefGoogle Scholar
  93. Scharffetter-Kochanek K, Brenneisen P, Wenk J, Ma W, Kuhr L, Meewes C, Wlaschek M (2000) Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 35: 307–316.CrossRefGoogle Scholar
  94. Shertzer HG, Nerbert DW, Puga A, Ary M, Sonntag D, Dixon K, Robinson LJ, Cianciola E, Dalton TP (1998) Dioxin causes a sustained oxidative stress response in the mouse. Biochem Biophys Res Commun 253: 44–48.CrossRefGoogle Scholar
  95. Shi H, Hudson LG, Ding W, Wang S, Cooper KL, Liu S, Chen Y, Shi X, Liu KJ (2004b) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res Toxicol 17: 871–878.CrossRefGoogle Scholar
  96. Shi H, Hudson LG, Liu KJ (2004a) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Rad Biol Med 37: 582–593.CrossRefGoogle Scholar
  97. Shvedova AA, Kisin ER, Murray A, Kommineni C, Valluathan V, Castranova V (2004) Pro/antioxidant status in murine skin following topical exposure to cumene hydroperoxide throughout the ontogeny of skin cancer. Biochemistry (Moscow) 69: 23–31.CrossRefGoogle Scholar
  98. Shvedova AA, Tyurina JY, Kawai VA, Tyurin VA, Kommineni C, Castranova V, Fabisiak JP, Kagan VE (2002) Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide. J Invest Dermatol 118: 1008–1018.CrossRefGoogle Scholar
  99. Simonart T, Van Vooren JP, Parent D, Heenen M, Boelaert JR (2002) Role of iron in dermatology. Dermatology 200: 156–159.CrossRefGoogle Scholar
  100. Simpson R, Lindsay CD (2005) Effect of sulfur mustard on human cell lines with differential agent sensitivity. J Appl Toxicol 25: 115–128.CrossRefGoogle Scholar
  101. Singh S, Singh J (2004) Dermal toxicity and microscopic alterations by JP-8 jet fuel components in vivo in rabbit. Environ Toxicol Pharmacol 16: 153–161.CrossRefGoogle Scholar
  102. Sköld M, Börje A, Harambasic E, Karlberg A-T (2004) Contact allergens formed on air exposure of linalool. Identification and quantification of primary and secondary oxidation products and the effect on skin sensitization. Chem Res Toxicol 17: 1697–1705.CrossRefGoogle Scholar
  103. Slezak BP, Hatch GE, DeVito MJ, Diliberto JJ, Slade R, Crissman K, Hassoun E, Birnbaum LS (2000) Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci 54: 390–398.CrossRefGoogle Scholar
  104. Svobodova A, Psotova J, Walterova D (2003) Natural phenolics in the prevention of UV-induced skin damage: A review. Biomed Pap 147: 137–145.Google Scholar
  105. Tyrrell RM, Pourzand CA, Brown J, Hejmadi V, Kvam E, Ryter S, Watkin RD (2000) Cellular studies with UVA radiation: A role for iron. Radiat Protect Dosim 91: 37–39.Google Scholar
  106. Valencia A, Kochevar IE (2007) Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Investigative Dermatol: July 5: OnlineGoogle Scholar
  107. Vijayaraghavan R, Kulkarni A, Pant SC,Kumar P, Lakshmana Rao PV, Gupta N, Gautam A, Ganeson K (2005) Differential toxicity of sulfur mustard administered through percutaneous, subcutaneous, and oral routes. Toxicol Appl Pharmacol 202: 180–188.CrossRefGoogle Scholar
  108. Wang Y, Saladi R, Wei H (2003) Synergistic carcinogenesis of chemical carcinogens and long wave-length UVA radiation. Trends Photochem Photobiol 10: 31–45.Google Scholar
  109. Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23: 51–57.CrossRefGoogle Scholar
  110. Weller R (2003) Nitric oxide: A key mediator in cutaneous physiology. Clin Exp Dermatol 28: 511–514.CrossRefGoogle Scholar
  111. Wigger-Alberti W, Iliev D, Elsner P (1999) Contact dermatitis due to irritation. In: Occupational Skin Disease. Adams RM (ed). Saunders, Philadelphia, 1–9.Google Scholar
  112. Wlaschek M, Tantcheva-Poór I, Naderi L, Ma W, Schneider LA, Razi-Wolf Z, Schüller J, Scharffetter-Kochanek K (2001) Solar UV irradiation and dermal photoaging. J Photochem Photobiol B 63: 41–51.CrossRefGoogle Scholar
  113. Wyde ME, Braen APJM, Hejtmancik M, Milton J, JerryD, John D, Blake JC, Cooper SD, Mahler J, Vallent, Bucher JR, Walker NJ (2004) Oral and dermal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cutaneous papillomas and squamous cell carcinomas in female hemizygous Tg.Ac transgenic mice. Toxicol Sci 82: 34–45.CrossRefGoogle Scholar
  114. Xia Z, Miyakoshi T, Yoshoda T (2004) Lipoxygenase-catalyzed polymerization of phenolic lipids suggests a new mechanism for allergic contact dermatitis by urushiol and its analogs. Biochem Biophys Res Commun 315: 704–709.CrossRefGoogle Scholar
  115. Yasui H, Sakurai H (2003) Age-dependent generation of reactive oxygen species in the skin of live hairless rats exposed to UVA light. Exper Dermatol 12: 655–661.CrossRefGoogle Scholar
  116. Zapor L (2004) Toxicity of some phenolic derivatives-in vitro studies. Ergonomics 10: 319–331.Google Scholar
  117. Zhu Q-X, Shen T, Ding R, Liang Z-Z, Zhang X-J (2005) Cytotoxicity of trichloroethylene and perchloroethylene on normal human epidermal keratinocytes and protective role of vitamin E. Toxicol 209: 55–67.CrossRefGoogle Scholar
  118. Zug KA, Marlss JG (1999) Plants and woods. In: Occupational Skin Disease. Adams RM (ed). Saunders, Philadelphia, 567–596.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistrySan Diego State UniversitySan DiegoUSA
  2. 2.Centro de Graduados e Investigación del Instituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations