Skip to main content

Polysaccharide–Protein Conjugate Vaccines

  • Chapter
  • First Online:
History of Vaccine Development

Abstract

It is to Karl Landsteiner that we owe the notion that the immunologic properties of nonimmunogenic ligands (haptens), including saccharides, can be improved by covalent attachment to proteins [1]. His pioneering studies in the 1920s influenced Walter Goebel and Oswald Avery (his colleague at the Rockefeller Institute, NY) who sought evidence that serum antibodies to the type 3 capsular polysaccharide (CP) of pneumococci conferred protection to that pathogen [2]. These workers showed that a synthetic disaccharide (hapten), cellubiuronic acid, bound to a protein could elicit antibodies that were both reactive with the type 3 CP and conferred protection to mice challenged with that pathogen. At that time, purification of individual components of bacteria was difficult and high-titered antisera were prepared by intravenous injections of whole bacteria: such serologic reagents were multivalent. Their studies provided convincing evidence that CPs were both essential virulence factors and protective antigens of pneumococci.

This presentation is dedicated to the memory of Margaret Pittman, who died in 1995 at the age of 94 years. We acknowledge her many original and important contributions to science with ­special reference to Hemophilus influenzae type b (Hib). It was our good fortune to have been befriended by Pittman and we are grateful to the many enriching times spent with this gifted ­scientist and inspiring teacher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landsteiner K. The Specificity of Serological Reactions. Revised ed. Cambridge, MA: Harvard University Press, 1970

    Google Scholar 

  2. Avery OT, Goebel WF. Chemoimmunological studies on conjugated carbohydrateproteins. II. Immunological specificity of synthetic sugar-proteins. J Exp Med 1929;50:521–33

    Google Scholar 

  3. Wood WB Jr, Smith MB. Surface phagocytes – its relation to the mechanism of recovery in acute pneumonia caused by encapsulated bacteria. Trans Assoc Am Physicians. 1947;60:77–81

    PubMed  Google Scholar 

  4. Sutton A, Schneerson R, Kendall-Morris S, Robbins JB. Differential complement resistance mediates virulence of Haemophilus influenzae type b. Infect Immun 1982;35:95–104

    PubMed  CAS  Google Scholar 

  5. Lunderitz O, Freudenberg MA, Galanos C, Lemann V, Rietchel ET, Shaw DH. Lipopolysaccharides of Gram-negative bacteria. Curr Top Microbiol Transp 1982;17:79–151

    Google Scholar 

  6. Liang-Takasaki CJ, Grossman N, Leive L. Salmonella activate complement differentially via the alternate pathway depending on the structure of their lipopolysaccharide O-antigen. J Immunol 1983;130:1867–79

    PubMed  CAS  Google Scholar 

  7. Parke JC, Schneerson R, Robbins JB. The attack rate, age incidence, racial distribution and case fatality rate of Haemophilus influenzae type b meningitis in Mecklenburg County, North Carolina. J Pediatr 1972;81:765–9

    Article  PubMed  Google Scholar 

  8. Gilsdorf J. Bacterial meningitis in southwestern Alaska. Am J Epidemiol 1977;106:388–91

    PubMed  CAS  Google Scholar 

  9. Ward JJ, Lum MKW, Margolis HS. Haemophilus influenzae in Alaskan Eskimos: characteristics of a population with an unusual incidence of invasive disease. Lancet 1981;1:121–5

    Google Scholar 

  10. Hanna JN. The epidemiology of invasive Haemophilus influenzae infections in children under five years of age in the Northern Territory: a three year study. Med J Aust 1990;152:243–40

    Google Scholar 

  11. Sell HW, Merrill RE, Doyne EO, Zimsky EP. Long-term sequellae of Hemophilus influenzae meningitis. Pediatrics 1972;49:206–11

    PubMed  CAS  Google Scholar 

  12. Glode MP, Schiffer MS, Robbin JB et al. An outbreak of Haemophilus influenzae type b meningitis in an enclosed hospital population. J Pediatr 1976;88:36–40

    Article  PubMed  CAS  Google Scholar 

  13. Glode MP, Daum RS, Goldmann DA, LeClair J, Smith A. Haemophilus influenzae type b meningitis: a contagious disease. Br Med J 1980;i:1–7

    Google Scholar 

  14. Redmond SR, Pichichero ME. Haemophilus influenzae type b disease. An epidemiologic study with special reference to day-care centers. JAMA 1984;252:2581–4

    Google Scholar 

  15. Claesson B, Trollfors B, Ekstrom-Jodal B et al. Incidence and prognosis of acute epiglottitis in children in a Swedish region. Pediatr Infect Dis 1984;3:534–8

    Article  PubMed  CAS  Google Scholar 

  16. Pittman M. Variation and type specificity in the bacterial species Haemophilus influenzae. J Exp Med 1931;53:471–92; Ibid. The action of type-specific Haemophilus influenzae antiserum. J Exp Med 1931;58:683–706

    Google Scholar 

  17. Fothergill LD, Wright J. Influenzal meningitis: relation of age incidence to the bactericidal power of blood agsint the causal organism. J Immunol 1933;24:273–84

    Google Scholar 

  18. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. I. The role of humoral antibodies, J Exp Med 1969;129:1307–26

    Google Scholar 

  19. Alexander HE, Heidelberger M, Leidy G. The protective or curative element in H influenzae rabbit serum. Yale J Biol Med 1944;16:425–30

    PubMed  CAS  Google Scholar 

  20. Schneerson R, Bradshaw M, Whisnant JK et al. An Escherichia coli antigen crossreactive with the capsular polysaccharide of Haemophilus influenzae type b: occurrence among known serotypes, and immunochemical and biologic properties of antisera towards H influenzae type b. J Immunol 1972;108:1551–62. Shneerson R, Robbins JB. Induction of serum Haemophilus influenzae type b capsular antibodies in adult volunteers fed cross-reacting Escherichia coli 075:K100:H5. N Engl J Med 1975;292:1093–6

    Google Scholar 

  21. Robbins JB, Schneerson R, Glode MP et al. Cross-reactive antigens and immunity to diseases caused by encapsulated bacteria. J Allergy Clin Immunol 1975;56:141–51

    Article  PubMed  CAS  Google Scholar 

  22. Robbins JB, Parke JC, Schneerson R et al. Quantitative measurement of “natural” and ­immunization-induced Haemophilus influenzae type b capsular polysaccharide antibodies. Pediatr Res 1973;7:103–10

    Article  PubMed  CAS  Google Scholar 

  23. Santosham M, Reid R, Ambrosino DM, et al. Prevention of Haemophilus influenzae type b infections in high-risk infants treated with bacterial polysaccharide immune globulin. N Egl J Med 1987;317:923–9

    Article  CAS  Google Scholar 

  24. Trollfors B, Lagergärd T, Cleasson BA, Thornberg E, Martinell J, Schneerson R. Characterization of the serum antibody response to the capsular polysaccharide of Haemophilus influenzae type b in children with invasive infections. J Infect Dis 1992;166:1335–9

    Article  PubMed  CAS  Google Scholar 

  25. Smith DH, Peter G, Ingram DL, Anderson P. Responses of children immunized with the capsular polysaccharide of Haemophilus influenzae type b. Pediatrics 1973;52:637–41

    PubMed  CAS  Google Scholar 

  26. Peltola H, Kayhty H., Sivonen A, Makela PH. Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double blind study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 1977;60:730–7

    Google Scholar 

  27. Austrian R. Some observations on the pneumococcus and on the current status of pneumococcal disease and it prevention. Rev Infect Dis 1981;(Suppl):S1–S17

    Google Scholar 

  28. Schneerson R, Barrera O, Sutton A, Robbins JB. Preparation, characterization and immunogenicity of Haemophilus influenzae type b polysaccharide protein conjugates. J Exp Med 1980;152:361–76

    Article  PubMed  CAS  Google Scholar 

  29. Chu CY, Schneerson R, Robbins, Rastogi, SC. Further studies on the immunogenicity of Haemophilus influenzae type b and pneumococcal type 6A polysaccharide protein conjugates. Infect Immun 1983;40:245–56

    Google Scholar 

  30. Anderson P. Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM 197. Infect Immun 1983;39:233–8

    PubMed  CAS  Google Scholar 

  31. Marburg S, John D, Tolman RL, et al. Biomolecular chemistry of macromolecules – synthesis of bacterial polysaccharide conjugates with Neisseria meningitidis membrane protein. J Am Chem Soc 1986;108:5282–7

    Article  CAS  Google Scholar 

  32. Anderson PW, Pichichereo ME, Insel RA. Immunization of two-month-old infants with ­protein coupled oligosaccharide derived from the capsule of Haemophilus influenzae type b. J Pediatr 1985;107:346–51

    Article  PubMed  CAS  Google Scholar 

  33. Claesson BA, Trollfors B, Lagergard T et al. Clinical and immunological responses to the capsular polysaccharide of Haemophilus influenzae type alone or conjugated to tetanus toxoid in 18- to 23-month-old children. J Pediatr 1988;112:695–702

    Article  PubMed  CAS  Google Scholar 

  34. Parke JC, Schneerson R, Reimer C et al. Clinical and immunologic responses to Haemophilus influenzae type b-tetanus toxoid conjugate vaccine in infants injected at 3, 5, 7 and 18 months of age. J Pediatr 1991;118:184–90

    Article  PubMed  Google Scholar 

  35. Robbins JB, Schneerson R. Polysaccharide protein conjugates: a new generation of vaccines. J Infect Dis 1990;161:821–32

    Article  PubMed  CAS  Google Scholar 

  36. World Health Organization. Requirements for Haemophilus type b conjugate vaccines. WHO Tech Rep Ser 1991;814

    Google Scholar 

  37. Claesson BA, Trollfors B, Anderson PW et al. Serum antibodies in 6-year-old children ­vaccinated in infancy with Haemophilus influenzae type b-tetanus toxoid conjugate vaccine. Pediatr Infect Dis J 1996;170–2

    Google Scholar 

  38. Anderson PW, Pichichero ME, Insel RA. Vaccines consisting of periodate cleaved oligosaccharides from the capsule of Haemophilus influenzae type b coupled to a protein carrier: structural and temporal requirements for priming in the human infant. J Immunol 1986;137:1181–6

    PubMed  CAS  Google Scholar 

  39. Szu SC, Li X, Schneerson R, Vickers JH, Bryla DA, Robbins JB. Comparative immunogenicity of Vi polysaccharide-protein conjugates composed of cholera toxin or its B-subunit as a carrier bound to high to lower molecular weight Vi. Infect Immun 1989;57:3823–7

    PubMed  CAS  Google Scholar 

  40. Schneerson R, Robbins JB, Chu C, et al. Serum antibody responses of juvenile and infant rhesus monkeys injected with Haemophilus influenzae type b and pneumococcus type 6A polysaccharide-protein conjugates. Infect Immun 1984;45:582–91

    PubMed  CAS  Google Scholar 

  41. Granoff DM, Holmes SJ, Beishe RB et al. Effect of carrier protein priming on antibody response to Haemophilus influenzae type b conjugate vaccines in infants. JAMA 1994;272:1116–21

    Article  PubMed  CAS  Google Scholar 

  42. Barington T, Gyhrs A, Kristensne K, Heilmann C. Opposite effects of actively and passively acquired immunity to the carrier of responses of human infants to a Haemophilus influenzae type b conjugate vaccine. Infect Immun 1994;62:0–14

    Google Scholar 

  43. Greenberg DP, Leiberman JM, Marcy SM et al. Enhanced antibody responses in infants given different sequences of heterogeneous Haemophilus influenzae type b conjugate vaccines. J Pediatr 1994;126:206–11

    Google Scholar 

  44. Robbins JB, Schneerson R, Szu, SC. Perspective. Hypothesis: serum IgG antibody is sufficient to confer protection against infection disases in inactivating the inoculum. J Infect Dis 1995;171:1387–98

    Google Scholar 

  45. MacLeod CM, Hodges RG, Heidleberger M et al. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 1945;82:445–65

    Article  Google Scholar 

  46. Gotschlich EC, Goldschnieder I, Artnstein MS. Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J Exp Med 1969;129:1385–95

    Google Scholar 

  47. Takala Ak, Eskola J, Leinonen M et al. Reduction of oropharyngeal carriage of Haemophilus influenzae type b (Hib) in children immunized with Hib conjugate vaccine. J Infect Dis 1991;164;982–6

    Google Scholar 

  48. Jónsdóttir KE, Steingrímsson O, Ólafsson O. Immunization of infants in Iceland against Haemophilus influenzae type b. Lancet 1992;340:252–3

    Article  PubMed  Google Scholar 

  49. Vadheim CM, Greenberg DP, Eriksen E et al. Eradication of Haemophilus influenzae type b disease in southern California. Arch Pediatr Adolesc Med 1994;148:51–6

    PubMed  CAS  Google Scholar 

  50. Van Alphen L, Spanjaard L, van der Ende A, Dankert J. Predicted disappearance of Haemophilus influenzae type b meningitis in the Netherlands. Lancet 1994;344:195

    Google Scholar 

  51. CDC. FDA approval of use of a new Haemophilus b conjugate vaccine and a combined diphtheria-tetanus-pertussis and Haemophilus b conjugate vaccine for infants and children. MMWR 1993;42:296–8

    Google Scholar 

  52. CDC. Progress toward elimination of Haemophilus influenzae type b disease among infants and children – United States, 1993–1994. MMWR 1995;44:545–50

    Google Scholar 

  53. Baker CJ, Kasper DL. Correlation of maternal antibody deficiency and susceptibility to neonatal group B streptococcal infection. N Egl J Med 1976;294:753–6

    Article  CAS  Google Scholar 

  54. Robbins JB, Schneerson R, Vann WF, Bryla DA, Fattom A. Prevention of systemic infections caused by group B Streptococcus and Staphylococcus aureus by multivalent polysaccharide-protein conjugate vaccines. In: Combined Vaccines and Simultaneous Administration: Current Issues and Perspectives. Williams JC, Goldenthal KL, Burns DL, Lewis BP Jr, eds, New York Academy of Sciences: 1995;754:68–82

    Google Scholar 

  55. Robbins JB, Chu CY, Schneerson R. Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphodial Salmonellae and Shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin Infect Dis 1982;15:346–61

    Article  Google Scholar 

  56. Szu SC, Gupta RK, Robbins JB. Induction of serum vibriocidal antibodies by O-specific polysaccharide-protein conjugate vaccines for prevention of cholera. In: Wachsmuth IK, Blake PA, Olsvik O, eds. Vibrio cholerae and Cholera. Molecular to Global Perspectives. Washington DC: American Society for Microbiology, 1994;381–94

    Google Scholar 

  57. World Health Organization Expert Committee on Biologic Standardization. Requirements on Vi Polysaccharide for Typhoid. Tech Rep Ser 840, 43rd ed. Geneva, Switzerland, 1993;14–32

    Google Scholar 

  58. Szu SC, Taylor DN, Trofa AC et al. Laboratory and preliminary clinical characterization of Vi capsular polysaccharide-protein conjugate vaccines. Infect Immun 1944;62:4440–4

    Google Scholar 

  59. Taylor DN, Trofa AC, Sadoff J et al. Synthesis, characterization and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shingella dysentieriae type 1, Shingella flexneri type 2a and Shigella sonnei (Plesiomonas shingelloides) bound to bacterial toxoids. Infect Immun 1993;61:3678–87

    PubMed  CAS  Google Scholar 

  60. Cohen D, Ashkenazi S, Green M et al. Safety, immunogenicity of preliminary efficacy of Shingella conjugate vaccine in Israeli soldiers (manuscript in preparation)

    Google Scholar 

  61. Svenson SB, Nurminen M, Lindberg AA. Artificial Salmonella vaccines: O-antigen oligosaccharide-protein cinjugates induce protection against infection with Salmonella typhimurium. Infect Immun 1979;25:863–70

    PubMed  CAS  Google Scholar 

  62. Watson DC, Robbins JB, Szu SC et al. Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein vaccine. Infect Immun 1992; 60:4679–86

    PubMed  CAS  Google Scholar 

  63. Peeters CAM, Evenberg D, Hoogerhout P et al. Synthetic trimer and teramer of 3-β-D-ribose-(1,1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys. Infect Immun 1992;60:1862–33

    Google Scholar 

  64. Pavliak V, Nashed J, Pozsgay V et al. The binding of the O-antigen of Shingella dysenteriae type 1 and 26 related synthetic fragments to a monoclonal IgM antibody. J Biol Chem 1993;268:25797–802

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Robbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robbins, J.B., Schneerson, R., Szu, S.C., Pozsgay, V. (2011). Polysaccharide–Protein Conjugate Vaccines. In: Plotkin, S. (eds) History of Vaccine Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1339-5_12

Download citation

Publish with us

Policies and ethics