Skip to main content

Clinical Challenges of fMRI

  • Chapter
  • First Online:
BOLD fMRI

Abstract

Functional magnetic resonance imaging (fMRI) has revolutionized clinical brain mapping and has become the predominant functional neuroimaging technique since its original report by Belliveau and colleagues.1 The appeal of fMRI is attributable to several advantages that it offers over other functional neuroimaging techniques. Functional MRI is noninvasive; it is a rapid technique that offers the opportunity for repeated measurements of the same task to investigate response consistency, to compare activations across tasks, and to measure change over time.

This chapter previously appeared in Functional MRI: Basic Principles and Clinical Applications, edited by S. Faro and F. Mohamed. New York: Springer Science+Business Media, LCC 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254(5032):716–719.

    Article  PubMed  CAS  Google Scholar 

  2. Righini A, de Divitiis O, Prinster A, Spagnoli D, Appollonio I, Bello L, Scifo P, Tomei G, Villani R, Fazio F, Leonardi M. Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist Tomogr. 1996;20:702.

    Article  PubMed  CAS  Google Scholar 

  3. Krings T, Topper R, Willmes K, Reinges MHT, Gilsbach JM, Thron A. Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology. 2002(a);58.

    Google Scholar 

  4. Mazziotta JC, Huang SC, Phelps ME, Carson RE, MacDonald NS, Mahoney K. A noninvasive positron computed tomography technique using oxygen-15–labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab. 1985;5(1):70–78.

    Article  PubMed  CAS  Google Scholar 

  5. Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA. 1990;87:6082–6086.

    Article  PubMed  CAS  Google Scholar 

  6. Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154:101–104.

    Article  PubMed  CAS  Google Scholar 

  7. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  8. Jahanshahi M, Rothwell J. Transcranial magnetic stimulation studies of cognition: an emerging field. Exp Brain Res. 2000;131:1–9.

    Article  PubMed  CAS  Google Scholar 

  9. Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7(3):240–276.

    PubMed  CAS  Google Scholar 

  10. Krings T, Reinges MHT, Willmes K, Nuerk HC, Meister IG, Gilsbach JM, Thron A. Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology. 2002(b);44:459–466.

    Article  PubMed  CAS  Google Scholar 

  11. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided Neurosurgery. Am J Neuroradiol. 2000;21:1415–1422.

    PubMed  CAS  Google Scholar 

  12. Schreiber A, Hubbe U, Ziyeh S, Hennig J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. Am J Neuroradiol. 2000;21:1055–1063.

    PubMed  CAS  Google Scholar 

  13. Schlosser R, Husche S, Gawehn J, Grunert P, Vucurevic G, Geserich T, Kaufmann B, Rossbach W, Stoeter P. Characterization of BOLD-fMRI signal during a verbal fluency paradigm in patients with intracerebral tumors affecting the frontal lobe. Magn Reson Imaging. 2002;20:7–16.

    Article  PubMed  Google Scholar 

  14. Schmitz B, Bettiger BW, Hossmann KA. Brief hypercapnia enhances somatosensory activation of blood flow in rat. J Cereb Blood Flow Metab. 1996;16:1307–1311.

    Article  PubMed  CAS  Google Scholar 

  15. Bock C, Schmitz B, Kerskens CM, Gyngell ML, Hossmann KA, Hoehn-Berlage M. Functional MRI of somatosensory activation in rat: effect of hypercapnic ­up-regulation on perfusion and BOLD-imaging. Magn Reson Med. 1998;39:457–461.

    Article  PubMed  CAS  Google Scholar 

  16. Bandetti PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10:197–203.

    Article  Google Scholar 

  17. Kruger G, Kastrup A, Glover GH. Neuroimaging at 1.5T and 3.0T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med. 2001;45(4):595–604.

    Article  PubMed  CAS  Google Scholar 

  18. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–326.

    Article  PubMed  CAS  Google Scholar 

  19. Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK. Susceptibility-induced loss of signal: Comparing PET and fMRI on a semantic task. Neuroimage. 2000;11:589–600.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen MS, Weisskoff RM. Ultra-fast imaging. Magn Reson Imaging. 1991;9:1–37.

    Article  PubMed  CAS  Google Scholar 

  21. Merboldt KD, Fransson P, Bruhn H, Frahm J. Functional MRI of the human amygdala? Neuroimage. 2001;14(2):253–257.

    Article  PubMed  CAS  Google Scholar 

  22. Fransson P, Merboldt KD, Ingvar M, Petersson KM, Frahm J. Functional MRI with reduced susceptibility artifact: high-resolution mapping of episodic memory encoding. Neuroreport. 2001;12(7):1415–1420.

    Article  PubMed  CAS  Google Scholar 

  23. Port JD, Pomper MG. Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr. 2000;24(6):958–964.

    Article  PubMed  CAS  Google Scholar 

  24. Gorno-Tempini ML, Hutton C, Josephs O, Deichmann R, Price C, Turner R. Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage. 2002;15(1):136–142.

    Article  PubMed  Google Scholar 

  25. Stables LA, Kennan RP, Gore JC. Asymmetric spin-echo imaging of magnetically inhomogeneous systems: theory, experiment, and numerical studies Magn Reson Med. 1998;40(3):432–442.

    Article  PubMed  CAS  Google Scholar 

  26. Stern CE, Corkin S, Gonzalez RG, Guimaraes AR, Baker JR, Jennings PJ, Carr CA, Sugiura RM, Vedantham V, Rosen BR. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93(16):8660–8665.

    Article  PubMed  CAS  Google Scholar 

  27. Hariri A, Bookheimer SY, Mazziotta J. A neural network for modulating the emotional response to faces. Neuroreport. 2000;11(1):43–48.

    Article  PubMed  CAS  Google Scholar 

  28. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron. 1998;20(5):937–945.

    Article  PubMed  CAS  Google Scholar 

  29. Cordes D, Turski PA, Sorenson JA. Compensation of susceptibility-induced ­signal loss in echo-planar imaging for functional applications. Magn Reson Imaging. 2000;18(9):1055–1068.

    Article  PubMed  CAS  Google Scholar 

  30. Stenger VA, Boada FE, Noll DC. Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI. Magn Reson Med. 2000;44(4):525–531.

    Article  PubMed  CAS  Google Scholar 

  31. Glover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med. 2001;46(3):515–522.

    Article  PubMed  CAS  Google Scholar 

  32. Yang Y, Gu H, Zhan W, Xu S, Silbersweig DA, Stern E. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med. 2002;48(2):278–289.

    Article  PubMed  Google Scholar 

  33. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med. 2002;48(5):860–866.

    Article  PubMed  Google Scholar 

  34. Cohen MS, Bookheimer SY. Localization of brain function using magnetic resonance imaging. Trends Neurosci. 1994;17:268–277.

    Article  PubMed  CAS  Google Scholar 

  35. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Nat Acad Sci USA. 1986;83:1140–1144.

    Article  PubMed  CAS  Google Scholar 

  36. Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272:551–554.

    Article  PubMed  CAS  Google Scholar 

  37. Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science. 1999;286:1555–1558.

    Article  PubMed  CAS  Google Scholar 

  38. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995;33:453–459.

    Article  PubMed  CAS  Google Scholar 

  39. Cannestra AF, Pouratian N, Bookheimer SY, Martin NA, Becker D, Toga AW. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb Cortex. 2001;11:773–782.

    Article  PubMed  CAS  Google Scholar 

  40. Kim DS, Duong TQ, Kim SG. High-resolution mapping of iso-orientation columns by fMRI [see comments]. Nat Neurosci. 2000;3:164–169.

    Article  PubMed  CAS  Google Scholar 

  41. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89:5675–5679.

    Article  PubMed  CAS  Google Scholar 

  42. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89:5951–5955.

    Article  PubMed  CAS  Google Scholar 

  43. Sidtis JJ, Strother SC, Anderson JR, Rottenberg DA. Are brain functions really additive? Neuroimage. 1999;9:490–496.

    Article  PubMed  CAS  Google Scholar 

  44. Stark CEL, Squire LR. When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA. 2001;98:12760–12765.

    Article  PubMed  CAS  Google Scholar 

  45. Gusnard DA, Raichle ME. Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–694.

    Article  PubMed  CAS  Google Scholar 

  46. Raichle ME, Fiez JA, Videen TO, MacLeod AK, Pardo JV, Fox PT, Petersen SE. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.

    Article  PubMed  CAS  Google Scholar 

  47. Petersen SE, van Mier H, Fiez JA, Raichle ME. The effects of practice on the functional anatomy of task performance. Proc Natl Acad Sci USA. 1998;95:853–860.

    Article  PubMed  CAS  Google Scholar 

  48. Van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol. 1998;80:2177–2199.

    PubMed  CAS  Google Scholar 

  49. Madden DJ, Turkington TG, Provenzale JM, Denny LL, Hawk TC, Gottlob LR, Coleman RE. Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum Brain Map. 1999;7:115–135.

    Article  CAS  Google Scholar 

  50. Garavan H, Kelley D, Rosen A, Rao SR, Stein EA. Practice-related functional activation changes in a working memory task. Microsc Res Tech. 2000;51:54–63.

    Article  PubMed  CAS  Google Scholar 

  51. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–456.

    Article  PubMed  CAS  Google Scholar 

  52. Sonty SP, Mesulam MM, Thompson CK, Johnson NA, Weintraub S, Parrish TB, Gitelman DR. Primary progressive aphasia: PPA and the language network. Ann Neurol. 2003;53(1):35–49.

    Article  PubMed  Google Scholar 

  53. Calvert GA, Brammer MJ, Morris RG, Williams SC, King N, Matthews PM. Using fMRI to study recovery from acquired dysphasia. Brain Lang. 2000;71(3):391–399.

    Article  PubMed  CAS  Google Scholar 

  54. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978–984.

    Article  PubMed  CAS  Google Scholar 

  55. Cohen MS, DuBois RM. Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10:33–40.

    Article  PubMed  CAS  Google Scholar 

  56. Huettel SA, McCarthy G. The effects of single-trial averaging upon the spatial extent of fMRI activation. Neuroreport. 2001;12:2411–2416.

    Article  PubMed  CAS  Google Scholar 

  57. Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PSF, Brewer CC, Perry HM, Morris GL, Mueller WM. Language dominance in neurologically normal and epilepsy subject: A functional MRI study. Brain. 1999;122:2033–2045.

    Article  PubMed  Google Scholar 

  58. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann NY Acad Sci. 1977;299:355–369.

    Article  PubMed  CAS  Google Scholar 

  59. Leh Rich S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R, Hertz-Pannier L, Le Bihan D, Marsault C, Baulac M. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology. 2000;54.

    Google Scholar 

  60. Bookheimer SY, Zeffiro TA, Blaxton T, Malow BA, Gaillard WD, Sato S, Kufta C, Fedio P, Theodore WH. A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology. 1997;48:1056–1065.

    Article  PubMed  CAS  Google Scholar 

  61. Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW. Utility of pre-operative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002(a);97:21–32.

    Article  PubMed  Google Scholar 

  62. Price C, Wise R, Ramsay S, Friston K, Howard D, Patterson K, Frackowiak R. Regional response differences within the human auditory cortex when listening to words. Neurosci Lett. 1992;146:179–182.

    Article  PubMed  CAS  Google Scholar 

  63. Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med. 1993;30:387–392.

    Article  PubMed  CAS  Google Scholar 

  64. Pouratian N, Bookheimer SY, O’Farrell AM, Sicotte NL, Cannestra AF, Becker D, Toga AW. Optical imaging of bilingual cortical representations: Case report. J Neurosurg. 2000;93:686–691.

    Article  Google Scholar 

  65. Duong TQ, Kim DS, Ugurbil K, Kim SG. Spatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response [in process citation]. Magn Reson Med. 2000;44:231–242.

    Article  PubMed  CAS  Google Scholar 

  66. Pouratian N, Sicotte N, Rex D, Martin NA, Becker D, Cannestra AF, Toga AW. Spatial/temporal correlation of BOLD and optical intrinsic signals in humans. Magn Reson Med. 2002b;47:766–776.

    Article  PubMed  Google Scholar 

  67. Roux FE, Boulanouar K, Ranjeva JP, Manelfe C, Tremoulet M, Sabatier J, Berry I. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999a;34:225–229.

    Article  PubMed  CAS  Google Scholar 

  68. Corina DP, Poliakov A, Steury K, Martin R, Mulligan K, Maravilla K, Brinkly JF, Ojemann GA. Correspondences between language cortex identified by cortical stimulation mapping and fMRI. Neuroimage. 2000;11:S295.

    Article  Google Scholar 

  69. Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr. 2000;24:99–105.

    Article  PubMed  CAS  Google Scholar 

  70. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, Cox R, Haughton VM. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39:515–520; discussion 520–511.

    PubMed  CAS  Google Scholar 

  71. Roux FE, Boulanouar K, Ranjeva JP, Tremoulet M, Henry P, Manelfe C, Sabatier J, Berry I. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir. 1999b;141:71–79.

    Article  CAS  Google Scholar 

  72. Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–408.

    Article  PubMed  CAS  Google Scholar 

  73. Haglund MM, Berger MS, Shamseldin M, Lettich E, Ojemann GA. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery. 1994;34:567–576; discussion 576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Pouratian, N., Bookheimer, S.Y. (2010). Clinical Challenges of fMRI. In: Faro, S., Mohamed, F. (eds) BOLD fMRI. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1329-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1329-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1328-9

  • Online ISBN: 978-1-4419-1329-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics