Skip to main content

In silico Discovery of Chemotherapeutic Agents

  • Chapter
  • First Online:
Infectious Disease Informatics

Abstract

In silico searches of new drug candidates have been considered as a cost-effective alternative to experimental drug screening. The efficiency of in silico approaches relies on important assumptions regarding the target selection, the methods employed, the quality of the drug and target molecule structures, and the computing environment (CPU-limited workstations, grids). The use of in silico methods is sometimes the only possible strategy when the infectious agent cannot be propagated safely or with sufficient reproducibility in a laboratory environment, when the target proteins cannot be heterologously expressed for structural and activity analyses or when the genetic variability requires the specific definition of invariable protein domains as potential targets. When the structure of the target is not available, in silico ligand-based drug design may be the only possible alternative strategy to find novel bioactive molecules. The strengths and limitations of in silico strategies therefore rely on the accuracy of the prior knowledge and assumptions. Here, we focus on Plasmodial proteins as a case study, since these proteins can often not be expressed in recombinant systems and are therefore difficult to characterize structurally using traditional physical approaches. This chapter will (1) briefly address the question of target selection in the context of a parasitic infection such as malaria, (2) introduce the peculiarities of malaria proteins and detail some in silico approaches to describe molecular structures of malaria drug targets, and review subsequent rational approaches for (3) receptor-based and (4) ligand-based drug design. This review also presents the evolution of the computing infrastructures that make in silico experiments possible and particularly discusses the WISDOM initiative for grid-enabled drug discovery against neglected and emergent diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abagyan R, Totrov M, Kuznetsov D (1994) ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    CAS  Google Scholar 

  • Adl SM, Simpson AG, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Afonso A, Hunt P, Cheesman S et al (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2 + ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50:480–489

    CAS  PubMed  Google Scholar 

  • Andrade J, Andersen M, Sillén A et al (2007) The use of grid computing to drive data-intensive genetic research. Eur J Hum Genet 15:694–702

    CAS  PubMed  Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP et al (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37:D539–D543

    CAS  PubMed  Google Scholar 

  • Bahl A, Brunk B, Crabtree J et al (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res 31:212–215

    CAS  PubMed  Google Scholar 

  • Baldwin PC (2003) How night air became good air, 1776–1930. Environ Hist 8(3):36

    Google Scholar 

  • Bastien O, Aude JC, Roy S et al (2004a) Fundamentals of massive automatic pairwise alignments of protein sequences: theoretical significance of Z-value statistics. Bioinformatics 20:534–537

    CAS  Google Scholar 

  • Bastien O, Ortet P, Roy S et al (2005) A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pairwise Z-score probabilities. BMC Bioinform 6:49

    Google Scholar 

  • Bastien O, Ortet P, Roy S et al (2007) The configuration space of homologous proteins: a theoretical and practical framework to reduce the diversity of the protein sequence space after massive all-by-all sequence comparisons. Future Generation Comput Syst 23:410–427

    Google Scholar 

  • Bhogal N, Balls M (2008) Translation of new technologies: from basic research to drug discovery and development. Curr Drug Discov Technol 5:250–262

    CAS  PubMed  Google Scholar 

  • Birkholtz LM, Bastien O, Wells G et al (2006). Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space? Malar J 5:110

    PubMed  Google Scholar 

  • Birkholtz LM, Blatch G, Coetzer TL et al (2008a) Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 7:197

    Google Scholar 

  • Birkholtz L, van Brummelen AC, Clark K et al (2008b) Exploring functional genomics for drug target and therapeutics discovery in Plasmodia. Acta Trop 105:113–123

    CAS  Google Scholar 

  • Bisanz C, Botté C, Saïdani N et al (2008) Structure, function and biogenesis of the secondary plastid of apicomplexan parasites. In: Schoefs B (ed) Current research in plant cell compartments. Research Signpost, India, pp 393–423

    Google Scholar 

  • Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. I. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    CAS  PubMed  Google Scholar 

  • Cao Y, Jiang T, Girke T (2008) A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics 24:i366–i374

    CAS  PubMed  Google Scholar 

  • Carlson HA, Masukawa KM, Rubins K et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114

    CAS  PubMed  Google Scholar 

  • Carucci DJ (2005) Advances in malaria genomics since MIM Arusha, 2002. Acta Trop 95:260–264

    CAS  PubMed  Google Scholar 

  • Carucci DJ, Goodwin PM, Gottlieb M et al (2004) The Plasmodium falciparum genome project. In: Waters AP, Janse CJ (eds) Malaria parasites: genome and molecular biology. Caister Academic, England, pp 1–6

    Google Scholar 

  • Caspi R, Foerster H, Fulcher CA et al (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    CAS  PubMed  Google Scholar 

  • Cavasotto CN, Singh N (2008) Docking and high throughput docking: successes and the challenge of protein flexibility. Curr Comput Aided Drug Des 4:221–234

    CAS  Google Scholar 

  • Charette BD, Macdonald RG, Wetzel S et al (2006) Protein structure similarity clustering: dynamic treatment of PDB structures facilitates clustering. Angew Chem Int Ed Engl 45:7766–7770

    CAS  PubMed  Google Scholar 

  • Christophides GK (2005) Transgenic mosquitoes and malaria transmission. Cell Microbiol 7:325–333

    CAS  PubMed  Google Scholar 

  • Coppel RL (2001) Bioinformatics and the malaria genome: facilitating access and exploitation of sequence information. Mol Biochem Parasitol 118:139–145

    CAS  PubMed  Google Scholar 

  • Covitz PA, Hartel F, Schaefer C et al (2003) caCORE: a common infrastructure for cancer informatics. Bioinformatics 19:2404–2412

    CAS  PubMed  Google Scholar 

  • Crosby MA, Goodman JL, Strelets VB et al (2007) FlyBase: genomes by the dozen. Nucleic Acids Res 3:D486–D491

    Google Scholar 

  • Cunha-Rodrigues M, Prudencio M, Mota MM et al (2006) Antimalarial drugs – host targets (re)visited. Biotechnol J 1:321–332

    CAS  PubMed  Google Scholar 

  • Davis AM, St-Gallay, SA, Kleywegt, GJ et al (2008) Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov Today 13:831–841

    CAS  PubMed  Google Scholar 

  • de Beer TAP, Wells GA, Burge PB et al (2009) Antimalarial drug discovery: in silico structural biology and rational drug design. Infect Disord Drug Targets 9:304–318

    PubMed  Google Scholar 

  • Delfino RT, Santos-Filho OA, Figueroa-Villar JD (2002) Molecular modeling of wild-type and antifolate resistant mutant Plasmodium falciparum DHFR. Biophys Chem 98:287–300

    CAS  PubMed  Google Scholar 

  • DePristo MA, de Bakker PI, Blundell TL (2004) Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure 12:831–838

    CAS  PubMed  Google Scholar 

  • Desowitz RS (1992) Malaria: from quinine to the vaccine. Hosp Pract 27:209–214, 217–224, 229–232

    CAS  Google Scholar 

  • Dheyongera JP, Geldenhuys WJ, Dekker TG et al (2005) Antimalarial activity of thioacridone compounds related to the acronycine alkaloid. Bioorg Med Chem 13:1653–1659

    CAS  PubMed  Google Scholar 

  • Dror O, Shulman-Peleg A, Nussinov R et al (2004) Predicting molecular interactions in silico. I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem 11:71–90

    CAS  PubMed  Google Scholar 

  • Dubois J, Bourg S, Vrain C et al (2008) Collections of compounds – how to deal with them? Curr Comput Aided Drug Des 4:156–168

    CAS  Google Scholar 

  • Dunkel M, Fullbeck M, Neumann S (2006) SuperNatural: a searchable database of available natural compounds. Nucleic Acids Res 34:D678–D683

    CAS  PubMed  Google Scholar 

  • Elsik CG, Mackey AJ, Reese JT et al (2007) Creating a honey bee consensus gene set. Genome Biol 8:R13

    PubMed  Google Scholar 

  • Ewing TJ, Makino S, Skillman AG et al (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    CAS  PubMed  Google Scholar 

  • Fatumo S, Plaimas K, Mallm JP et al (2009) Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol 9:351–358

    CAS  PubMed  Google Scholar 

  • Ferrari AM, Degliesposti G, Sgobba M et al (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 15:7865–7877

    CAS  PubMed  Google Scholar 

  • Flipo M, Beghyn T, Leroux V (2007) Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J Med Chem 50:1322–1334

    CAS  PubMed  Google Scholar 

  • Fogel GB, Cheung M, Pittman E et al (2008) In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase. J Mol Graph Model 26:1145–1152

    CAS  PubMed  Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ et al (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    CAS  PubMed  Google Scholar 

  • Frantz S (2007) Pharma faces major challenges after a year of failures and heated battles. Nat Rev Drug Discov 6:5–7

    CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. I. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    CAS  PubMed  Google Scholar 

  • Gardner MJ (1999) The genome of the malaria parasite. Curr Opin Genet Dev 9:704–708

    CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    CAS  PubMed  Google Scholar 

  • Gillet VJ (2008) New directions in library design and analysis. Curr Opin Chem Biol 12:372–378

    CAS  PubMed  Google Scholar 

  • Ginsburg H (2006) Progress in in silico functional genomics: the malaria metabolic pathways database. Trends Parasitol 22:238–240

    CAS  PubMed  Google Scholar 

  • Ginsburg H (2009) Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. Trends Parasitol 25:37–43

    CAS  PubMed  Google Scholar 

  • Goede A, Dunkel M, Mester N et al (2005) SuperDrug: a conformational drug database. Bioinformatics 21:1751–1753

    CAS  PubMed  Google Scholar 

  • Goodsell DS, Olson AJ (1990) Automated docking of substartes to proteins by simulated annealing. Prot Struct Funct Genet 8:195–202

    CAS  Google Scholar 

  • Güner O, Clement O, Kurogi Y (2004) Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem 11:2991–3005

    PubMed  Google Scholar 

  • Gutiérrez-de-Terán H, Nervall M, Dunn BM et al (2006) Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor. FEBS Lett 580:5910–5916

    PubMed  Google Scholar 

  • Hall SE (2006) Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discov Today 11:495–502

    CAS  PubMed  Google Scholar 

  • Hellerstein MK (2008) A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery. Metab Eng 10:1–9

    CAS  PubMed  Google Scholar 

  • Hernandez-Valladares M, Rihet P, ole-MoiYoi OK et al (2004) Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative mapping approach with human Chromosome 5q31-q33. Immunogenetics 56:115–117

    CAS  PubMed  Google Scholar 

  • Hesterkamp T, Whittaker M (2008) Fragment-based activity space: smaller is better. Curr Opin Chem Biol 1:260–268

    Google Scholar 

  • Höltje HD, Sipple W, Rognan D et al. (2008) Molecular modeling: basic principles and applications, 3rd edn. Wiley-VCH, Weihem

    Google Scholar 

  • Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    CAS  PubMed  Google Scholar 

  • Hubbard TJ, Aken BL, Beal K et al (2007) Ensembl 2007. Nucleic Acids Res 35:D610–D617

    CAS  PubMed  Google Scholar 

  • Huey R, Morris GM, Olson AJ et al (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    CAS  PubMed  Google Scholar 

  • Irwin JJ, Schoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    CAS  PubMed  Google Scholar 

  • Jambou R, Legrand E, Niang M et al (2005) Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366:1960–1963

    CAS  PubMed  Google Scholar 

  • Jana S, Paliwal J (2007) Novel molecular targets for antimalarial chemotherapy. Int J Antimicrob Agents 30:4–10

    CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    CAS  PubMed  Google Scholar 

  • Kasam V, Salzemann J, Breton V et al (2007) Proceedings of the Fifth IEEE workshop on challenges of large applications in distributed environments

    Google Scholar 

  • Kassel DB (2004) Applications of high-throughput ADME in drug discovery. Curr Opin Chem Biol 8:339–345

    CAS  PubMed  Google Scholar 

  • Kellenberger E, Rodrigo J, Muller P et al (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242

    CAS  PubMed  Google Scholar 

  • Kimura S, Kawasaki T, Hatakeyama M (2004) OBIYagns: a grid-based biochemical simulator with a parameter estimator. Bioinformatics 20:1646–1648

    CAS  PubMed  Google Scholar 

  • Kissinger JC, Brunk BP, Crabtree J et al (2002) The Plasmodium genome database. Nature 419:490–492

    CAS  PubMed  Google Scholar 

  • Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288

    CAS  PubMed  Google Scholar 

  • Lang P, Yeow K, Nichols A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356

    CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2006) Methods for the prediction of protein–ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7:395–406

    CAS  PubMed  Google Scholar 

  • Lawson D, Arensburger P, Atkinson P et al (2007) VectorBase: a home for invertebrate vectors of human pathogens. Nucleic Acids Res 35:D503–D505

    CAS  PubMed  Google Scholar 

  • Lemcke T, Christensen IT (1999) Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Bioorg Med Chem 7:1003–1011

    CAS  PubMed  Google Scholar 

  • Lindsay MA (2005) Finding new drug targets in the 21st century. Drug Discov Today 10:1683–1687

    CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  • Lipkus AH, Yuan Q, Lucas KA et al (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J Org Chem 73:4443–4451

    CAS  PubMed  Google Scholar 

  • Mahmoudi N, Garcia-Domenech R, Galvez J et al (2008) New active drugs against liver stages of Plasmodium predicted by molecular topology. Antimicrob Agents Chemother 52:1215–1220

    CAS  PubMed  Google Scholar 

  • Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207

    CAS  PubMed  Google Scholar 

  • Marrero-Ponce Y, Iyarreta-Veitía M, Montero-Torres A et al (2005) Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. J Chem Inf Model 45:1082–1100

    CAS  PubMed  Google Scholar 

  • McKie JH, Douglas KT, Chan C et al (1998) Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. J Med Chem 41:1367–1370

    CAS  PubMed  Google Scholar 

  • Mehlin C, Boni E, Buckner FS et al (2006) Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Mol Biochem Parasitol 148:144–160

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1993) Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Proteins 16:226–245

    CAS  PubMed  Google Scholar 

  • Muskavitch MA, Barteneva N, Gubbels MJ (2008) Chemogenomics and parasitology: small molecules and cell-based assays to study infectious processes. Comb Chem High Throughput Screen 11:624–646

    CAS  PubMed  Google Scholar 

  • Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63:892–906

    CAS  PubMed  Google Scholar 

  • Nchinda T (1998) Malaria: a reemerging disease in Africa. Emerg Infect Dis 4:398–403

    CAS  PubMed  Google Scholar 

  • Paul N, Rognan D (2002) ConsDock: a new program for the consensus analysis of protein-ligand interactions. Proteins 47:521–533

    CAS  PubMed  Google Scholar 

  • Rarey M, Kramer B, Lengauer T et al (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    CAS  PubMed  Google Scholar 

  • Rastelli G, Sirawaraporn W, Sompornpisut P et al (2000) Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. Bioorg Med Chem 8:1117–1128

    CAS  PubMed  Google Scholar 

  • Ridley RG (1998) Malaria: dissecting chloroquine resistance. Curr Biol 8:R346–R349

    CAS  PubMed  Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive of antimalarial drugs. Nature 415:686–693

    CAS  PubMed  Google Scholar 

  • Saidani N, Grando D, Valadie H et al (2009) Potential and limits of in silico target discovery – case study of the search for new antimalarial chemotherapeutic targets. Infect Genet Evol 9:359–367

    CAS  PubMed  Google Scholar 

  • Salzemann J, Kasam V, Jacq N et al (2007) Grid enabled high throughput virtual screening against four different targets implicated in malaria. Proceedings of HealthGrid conference 2007, Studies in Health Technology and Informatics, 126:47–54

    Google Scholar 

  • Santos-Filho OA, de Alencastro RB, Figueroa-Villar JD (2001) Homology modeling of wild type and pyrimethamine/cycloguanil-cross resistant mutant type Plasmodium falciparum dihydrofolate reductase. A model for antimalarial chemotherapy resistance. Biophys Chem 91(3):305–317

    CAS  PubMed  Google Scholar 

  • Schreck CE, Kline DL, Carlson DA (1990) Mosquito attraction to substances from the skin of different humans. J Am Mosq Control Assoc 6:406–410

    CAS  PubMed  Google Scholar 

  • Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911

    PubMed  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65:15–26

    CAS  PubMed  Google Scholar 

  • Teramoto R, Fukunishi H (2008) Structure-based virtual screening with supervised consensus scoring: evaluation of pose prediction and enrichment factors. J Chem Inf Model 48:747–754

    CAS  PubMed  Google Scholar 

  • Towie N (2006) Malaria breakthrough raises spectre of drug resistance. Nature 440:852–853

    CAS  PubMed  Google Scholar 

  • Toyoda T, Brobey RK, Sano G (1997) Lead discovery of inhibitors of the dihydrofolate reductase domain of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Biochem Biophys Res Commun 235:515–519

    CAS  PubMed  Google Scholar 

  • Utzinger J, Tanner M, Kammen DM et al (2002) Integrated program is key to malarial control. Nature 419:431

    CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Verkhivker GM, Bouzida D, Gehlhaar DK et al (2000) Deciphering common failures in molecular docking of ligand–protein complexes. J Comput Aided Mol Des 14:731–751

    CAS  PubMed  Google Scholar 

  • Villar HO (2007) Computational medicinal chemistry. Curr Top Med Chem 7:1509–1513

    CAS  PubMed  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7:57–79

    PubMed  Google Scholar 

  • Wiesner J, Seeber F (2005) The plastid-derived organelle of protozoan human parasites as a target of established and emerging drugs. Expert Opin Ther Targets 9:23–44

    CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 36:D901–D906

    Google Scholar 

  • World Malaria Report (2005) World Health Organization, WHO/UNICEF, Geneva

    Google Scholar 

  • Xie A, Sivaprakasam P, Doerksen R (2006) 3D-QSAR analysis of antimalarial farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold. Bioorg Med Chem 14:7311–7323

    CAS  PubMed  Google Scholar 

  • Yeh I, Hanekamp T, Tsoka S (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924

    CAS  PubMed  Google Scholar 

  • Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 10:357–365

    CAS  PubMed  Google Scholar 

  • Zhou Y, Ramachandran V, Kumar KA et al (2008) Evidence-based annotation of the malaria parasite’s genome using comparative expression profiling. PLoS ONE 3:e1570

    PubMed  Google Scholar 

  • Zuegge J, Ralph S, Schmuker M, et al (2001) Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280:19–26

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Birkholtz, LM. et al. (2010). In silico Discovery of Chemotherapeutic Agents. In: Sintchenko, V. (eds) Infectious Disease Informatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1327-2_14

Download citation

Publish with us

Policies and ethics