Electric Fields and Magnetic Fields in the Plasmasphere: A Perspective from CLUSTER and IMAGE

  • Hiroshi Matsui
  • John C. Foster
  • Donald L. Carpenter
  • Iannis Dandouras
  • Fabien Darrouzet
  • Johan De Keyser
  • Dennis L. Gallagher
  • Jerry Goldstein
  • Pamela A. Puhl-Quinn
  • Claire Vallat


The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.


Plasmasphere Electric Field Magnetic Field CLUSTER IMAGE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.C. Anderson, W.B. Hanson, R.A. Heelis, J.D. Craven, D.N. Baker, L.A. Frank, A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. 98(A4), 6069–6078 (1993) ADSGoogle Scholar
  2. P.C. Anderson, D.L. Carpenter, K. Tsuruda, T. Mukai, F.J. Rich, Multisatellite observations of rapid subauroral ion drifts (SAID). J. Geophys. Res. 106(A12), 29585–29599 (2001) ADSGoogle Scholar
  3. H.F. Balmforth, M.A. Clilverd, A.J. Smith, A case study of storm commencement and recovery plasmaspheric electric fields near L=2.5 at equinox. Ann. Geophys. 12(7), 625–635 (1994) ADSGoogle Scholar
  4. A. Balogh, C.M. Carr, M.H. Acuña, M.W. Dunlop, T.J. Beek, P. Brown, K.H. Fornaçon, E. Georgescu, K.H. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19(10–12), 1207–1217 (2001) ADSCrossRefGoogle Scholar
  5. W. Baumjohann, G. Haerendel, Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence. J. Geophys. Res. 90(A7), 6370–6378 (1985) ADSGoogle Scholar
  6. W. Baumjohann, G. Haerendel, F. Melzner, Magnetospheric convection observed between 0600 and 2100 LT: Variations with Kp. J. Geophys. Res. 90(A1), 393–398 (1985) ADSGoogle Scholar
  7. W. Baumjohann, R. Nakamura, G. Haerendel, Dayside equatorial-plane convection and IMF sector structure. J. Geophys. Res. 91(A4), 4557–4560 (1986) ADSGoogle Scholar
  8. L.P. Block, D.L. Carpenter, Derivation of magnetospheric electric fields from whistler data in a dynamic geomagnetic field. J. Geophys. Res. 79(19), 2783–2789 (1974) ADSGoogle Scholar
  9. N.M. Brice, Bulk motion of the magnetosphere. J. Geophys. Res. 72(21), 5193–5211 (1967) ADSGoogle Scholar
  10. J.L. Burch, IMAGE mission overview. Space Sci. Rev. 91(1–2), 1–14 (2000) ADSGoogle Scholar
  11. J.L. Burch, J. Goldstein, B.R. Sandel, Cause of plasmasphere corotation lag. Geophys. Res. Lett. 31, L05802 (2004) Google Scholar
  12. D.L. Carpenter, Whistler studies of the plasmapause in the magnetosphere, 1. Temporal variations in the position of the knee and some evidence on plasma motions near the knee. J. Geophys. Res. 71(3), 693–709 (1966) ADSGoogle Scholar
  13. D.L. Carpenter, Whistler evidence of the dynamic behavior of the duskside bulge in the plasmasphere. J. Geophys. Res. 75(19), 3837–3847 (1970) ADSGoogle Scholar
  14. D.L. Carpenter, J. Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22(12), 4291–4298 (2004) ADSGoogle Scholar
  15. D.L. Carpenter, N.T. Seely, Cross-L plasma drifts in the outer plasmasphere: Quiet time patterns and some substorm effects. J. Geophys. Res. 81(16), 2728–2736 (1976) ADSGoogle Scholar
  16. D.L. Carpenter, K. Stone, Direct detection by a whistler method of the magnetospheric electric field associated with a polar substorm. Planet. Space Sci. 15(2), 395–397 (1967) ADSGoogle Scholar
  17. D.L. Carpenter, C.G. Park, T.R. Miller, A model of substorm electric fields in the plasmasphere based on whistler data. J. Geophys. Res. 84(A11), 6559–6563 (1979) ADSGoogle Scholar
  18. D.L. Carpenter, K. Stone, J.C. Siren, T.L. Crystal, Magnetospheric electric fields deduced from drifting whistler paths. J. Geophys. Res. 77(16), 2819–2834 (1972) ADSGoogle Scholar
  19. S.W.H. Cowley, Magnetospheric asymmetries associated with the Y-component of the IMF. Planet. Space Sci. 29(1), 79–96 (1981) ADSGoogle Scholar
  20. N.U. Crooker, F.J. Rich, Lobe cell convection as a summer phenomenon. J. Geophys. Res. 98(A8), 13403–13407 (1993) ADSGoogle Scholar
  21. P. C:son Brandt, S. Ohtani, D.G. Mitchell, M.C. Fok, E.C. Roelof, R. Demajistre, Global ENA observations of the storm mainphase ring current: implications for skewed electric fields in the inner magnetosphere. Geophys. Res. Lett. 29(20), 1954 (2002) ADSGoogle Scholar
  22. F. Darrouzet, J. De Keyser, P.M.E. Décréau, J.F. Lemaire, M.W. Dunlop, Spatial gradients in the plasmasphere from Cluster. Geophys. Res. Lett. 33, L08105 (2006) Google Scholar
  23. F. Darrouzet, D.L. Gallagher, N. André, D.L. Carpenter, I. Dandouras, P.M.E. Décréau, J. De Keyser, R.E. Denton, J.C. Foster, J. Goldstein, M.B. Moldwin, B.W. Reinisch, B.R. Sandel, J. Tu, Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions. Space Sci. Rev. (2008). This issue Google Scholar
  24. J. De Keyser, Formation and evolution of subauroral ion drifts in the course of a substorm. J. Geophys. Res. 104(A6), 12339–12349 (1999) ADSGoogle Scholar
  25. J. De Keyser, M. Roth, J. Lemaire, The magnetospheric driver of subauroral ion drifts. Geophys. Res. Lett. 25(10), 1625–1628 (1998) ADSGoogle Scholar
  26. J. De Keyser, F. Darrouzet, M.W. Dunlop, P.M.E. Décréau, Least-squares gradient calculation from multi-point observations of scalar and vector fields: methodology and applications with Cluster in the plasmasphere. Ann. Geophys. 25(4), 971–987 (2007) ADSGoogle Scholar
  27. J. De Keyser, D.L. Carpenter, F. Darrouzet, D.L. Gallagher, J. Tu, CLUSTER and IMAGE: New ways to study the Earth’s plasmasphere. Space Sci. Rev. (2008). This issue Google Scholar
  28. O. de la Beaujardiere, D. Alcayde, J. Fontanari, C. Leger, Seasonal dependence of high-latitude electric fields. J. Geophys. Res. 96(A4), 5723–5735 (1991) ADSGoogle Scholar
  29. P.M.E. Décréau, P. Fergeau, V. Krasnosels’kikh, E. Le Guirriec, M. Lévêque, P. Martin, O. Randriamboarison, J.L. Rauch, F.X. Sené, H.C. Séran, J.G. Trotignon, P. Canu, N. Cornilleau, H. de Féraudy, H. Alleyne, K. Yearby, P.B. Mögensen, G. Gustafsson, M. André, D.A. Gurnett, F. Darrouzet, J. Lemaire, C.C. Harvey, P. Travnicek, Early results from the Whisper instrument on Cluster: an overview. Ann. Geophys. 19(10–12), 1241–1258 (2001) ADSCrossRefGoogle Scholar
  30. M.W. Dunlop, A. Balogh, Q.Q. Shi, Z. Pu, C. Vallat, P. Robert, S. Haaland, C. Shen, J.A. Davies, K.H. Glassmeier, P. Cargill, F. Darrouzet, A. Roux, The Curlometer and other gradient measurements with Cluster. Proceedings of the Cluster and Double Star Symposium, 5th Anniversary of Cluster in Space ESA SP-598 (2006) Google Scholar
  31. A.I. Eriksson, M. André, B. Klecker, H. Laakso, P.-A. Lindqvist, F. Mozer, G. Paschmann, A. Pedersen, J. Quinn, R. Torbert, K. Torkar, H. Vaith, Electric field measurements on Cluster: comparing the double-probe and electron drift techniques. Ann. Geophys. 24(1), 275–289 (2006) ADSCrossRefGoogle Scholar
  32. C.P. Escoubet, C.T. Russell, R. Schmidt (eds.), The Cluster and Phoenix Missions (Kluwer, Dordrecht, 1997), p. 658 Google Scholar
  33. B.G. Fejer, L. Scherliess, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res., Lett. 22(7), 851–854 (1995) ADSGoogle Scholar
  34. B.G. Fejer, R.W. Spiro, R.A. Wolf, J.C. Foster, Latitudinal variation of perturbation electric fields during magnetically disturbed periods—1986 Sundial observations and model results. Ann. Geophys. 8(6), 441–454 (1990) ADSGoogle Scholar
  35. S. Figueiredo, T. Karlsson, G.T. Marklund, Investigation of subauroral ion drifts and related field-aligned currents and ionospheric Pedersen conductivity distribution. Ann. Geophys. 22(3), 923–934 (2004) ADSCrossRefGoogle Scholar
  36. J.C. Foster, Storm time plasma transport at middle and high latitudes. J. Geophys. Res. 98(A2), 1675–1689 (1993) ADSGoogle Scholar
  37. J.C. Foster, W.J. Burke, SAPS: A new categorization for sub-auroral electric fields. Eos Trans. AGU 83(36), 393 (2002) ADSGoogle Scholar
  38. J.C. Foster, H.B. Vo, Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. 107(A12), 1475 (2002) Google Scholar
  39. J.C. Foster, J.M. Holt, R.G. Musgrove, D.S. Evans, Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett. 13(7), 656–659 (1986) ADSGoogle Scholar
  40. J.C. Foster, P.J. Erickson, A.J. Coster, J. Goldstein, F.J. Rich, Ionospheric signatures of plasmaspheric tails. Geophys. Res. Lett. 29(13), 1623 (2002) ADSGoogle Scholar
  41. J.C. Foster, W. Rideout, B. Sandel, W.T. Forrester, F.J. Rich, On the relationship of SAPS to storm-enhanced density. J. Atmos. Sol.-Terr. Phys. 69(3), 303–313 (2007) ADSGoogle Scholar
  42. D.L. Gallagher, M.L. Adrian, Two-dimensional drift velocities from the IMAGE EUV plasmaspheric imager. J. Atmos. Sol.-Terr. Phys. 69(3), 341–350 (2007) ADSGoogle Scholar
  43. Y.I. Galperin, V.N. Ponomarev, A.G. Zosimova, Plasma convection in the polar ionosphere. Ann. Geophys. 30(1), 1–7 (1974) Google Scholar
  44. J. Goldstein, Plasmasphere response: Tutorial and review of recent imaging results. Space Sci. Rev. 124(1–4), 203–216 (2006) ADSGoogle Scholar
  45. J. Goldstein, B.R. Sandel, The global pattern of evolution of plasmaspheric drainage plumes, in Inner Magnetosphere Interactions: New Perspectives from Imaging, ed. by J.L. Burch, M. Schulz, H. Spence. Geophysical Monograph Series, vol. 159 (American Geophysical Union, Washington, 2005), pp. 1–22 Google Scholar
  46. J. Goldstein, R.W. Spiro, P.H. Reiff, R.A. Wolf, B.R. Sandel, J.W. Freeman, R.L. Lambour, IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000. Geophys. Res. Lett. 29(16), 1819 (2002) ADSGoogle Scholar
  47. J. Goldstein, B.R. Sandel, W.T. Forrester, P.H. Reiff, IMF-driven plasmasphere erosion of 10 July 2000. Geophys. Res. Lett. 30(3), 1146 (2003a) ADSGoogle Scholar
  48. J. Goldstein, B.R. Sandel, M.R. Hairston, P.H. Reiff, Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys. Res. Lett. 30(24), 2243 (2003b) ADSGoogle Scholar
  49. J. Goldstein, R.W. Spiro, B.R. Sandel, R.A. Wolf, S.Y. Su, P.H. Reiff, Overshielding event of 28–29 July 2000. Geophys. Res. Lett. 30(8), 1421 (2003c) ADSGoogle Scholar
  50. J. Goldstein, B.R. Sandel, M.R. Hairston, S.B. Mende, Plasmapause undulation of 17 April 2002. Geophys. Res. Lett. 31, L15801 (2004a) ADSGoogle Scholar
  51. J. Goldstein, R.A. Wolf, B.R. Sandel, P.H. Reiff, Electric fields deduced from plasmapause motion in IMAGE EUV images. Geophys. Res. Lett. 31, L01801 (2004b) Google Scholar
  52. J. Goldstein, J.L. Burch, B.R. Sandel, Magnetospheric model of subauroral polarization stream. J. Geophys. Res. 110, A09222 (2005a) Google Scholar
  53. J. Goldstein, J.L. Burch, B.R. Sandel, S.B. Mende, P. C:son Brandt, M.R. Hairston, Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J. Geophys. Res. 110, A03205 (2005b) Google Scholar
  54. J. Goldstein, B.R. Sandel, W.T. Forrester, M.F. Thomsen, M.R. Hairston, Global plasmasphere evolution 22–23 April 2001. J. Geophys. Res. 110, A12218 (2005c) ADSGoogle Scholar
  55. J. Goldstein, B.R. Sandel, H.U. Frey, S.B. Mende, Multiple plasmapause undulations observed by the IMAGE satellite on 20 March 2001. J. Atmos. Sol.-Terr. Phys. 69(3), 322–333 (2007) ADSGoogle Scholar
  56. C.A. Gonzales, M.C. Kelley, D.L. Carpenter, T.R. Miller, R.H. Wand, Simultaneous measurements of ionospheric and magnetospheric electric fields in the outer plasmasphere. Geophys. Res. Lett. 7(7), 517–520 (1980) ADSGoogle Scholar
  57. G. Gustafsson, M. André, T. Carozzi, A.I. Eriksson, C.G. Fälthammar, R. Grard, G. Holmgren, J.A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, J.E. Wahlund, First results of electric field and density observations by Cluster EFW based on initial months of observations. Ann. Geophys. 19(10–12), 1219–1240 (2001) ADSCrossRefGoogle Scholar
  58. C.C. Harvey, Spatial gradients and the volumetric tensor, in Analysis Methods for Multi-Spacecraft Data, ed. by G. Paschmann, P.W. Daly. ISSI SR-001 (ESA Publications Division, Noordwijk, 1998), pp. 307–322 Google Scholar
  59. R.A. Heelis, W.R. Coley, East–West ion drifts at mid-latitudes observed by Dynamics Explorer 2. J. Geophys. Res. 97(A12), 19461–19469 (1992) ADSGoogle Scholar
  60. R.A. Helliwell, Whistlers and Associated Ionospheric Phenomena (Stanford University Press, Stanford, 1965), p. 349 Google Scholar
  61. J.P. Heppner, N.C. Maynard, Empirical high-latitude electric field models. J. Geophys. Res. 92(A5), 4467–4489 (1987) ADSGoogle Scholar
  62. C.S. Huang, G.D. Reeves, G. Le, K. Yumoto, Are sawtooth oscillations of energetic plasma particle fluxes caused by periodic substorms or driven by solar wind pressure enhancements? J. Geophys. Res. 110, A07207 (2005) Google Scholar
  63. C. Huang, S. Sazykin, R. Spiro, J. Goldstein, G. Crowley, J.M. Ruohoniemi, Storm-time penetration electric fields and their effects. Eos Trans. AGU 87(13), 131 (2006) ADSGoogle Scholar
  64. R.K. Jaggi, R.A. Wolf, Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78(16), 2852–2866 (1973) ADSGoogle Scholar
  65. T. Karlsson, G.T. Marklund, L.G. Blomberg, A. Mälkki, Subauroral electric fields observed by the Freja satellite: A statistical study. J. Geophys. Res. 103(A3), 4327–4341 (1998) ADSGoogle Scholar
  66. H. Khan, S.W.H. Cowley, Observations of the response time of high-latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP-8 data. Ann. Geophys. 17(10), 1306–1335 (1999) ADSGoogle Scholar
  67. B.A. Larsen, D.M. Klumpar, C. Gurgiolo, Correlation between plasmapause position and solar wind parameters. J. Atmos. Sol.-Terr. Phys. 69(3), 334–340 (2007) ADSGoogle Scholar
  68. J.F. Lemaire, K.I. Gringauz, The Earth’s Plasmasphere (Cambridge University Press, New York, 1998), p. 372 Google Scholar
  69. J.F. Lemaire, S.G. Batteux, I.N. Slypen, The influence of a southward and northward turning of the interplanetary magnetic field on the geomagnetic cut-off of cosmic rays, on the mirror points positions of geomagnetically trapped particles, and on their rate of precipitations in the atmosphere. J. Atmos. Sol.-Terr. Phys. 67(7), 719–727 (2005) ADSGoogle Scholar
  70. H. Matsui, J.M. Quinn, R.B. Torbert, V.K. Jordanova, W. Baumjohann, P.A. Puhl-Quinn, G. Paschmann, Electric field measurements in the inner magnetosphere by Cluster EDI. J. Geophys. Res. 108(A9), 1352 (2003) Google Scholar
  71. H. Matsui, V.K. Jordanova, J.M. Quinn, R.B. Torbert, G. Paschmann, Derivation of electric potential patterns in the inner magnetosphere from Cluster EDI data: Initial results. J. Geophys. Res. 109, A10202 (2004) ADSGoogle Scholar
  72. H. Matsui, J.M. Quinn, R.B. Torbert, V.K. Jordanova, P.A. Puhl-Quinn, G. Paschmann, IMF B y and seasonal dependences of the electric field in the inner magnetosphere. Ann. Geophys. 23(7), 2671–2678 (2005) ADSCrossRefGoogle Scholar
  73. H. Matsui, P.A. Puhl-Quinn, V.K. Jordanova, Y. Khotyaintsev, P.-A. Lindqvist, R.B. Torbert, Derivation of inner magnetospheric electric field (UNH-IMEF) model using Cluster data set. Ann. Geophys. 26(9), 2887–2898 (2008) ADSCrossRefGoogle Scholar
  74. N.C. Maynard, A.J. Chen, Isolated cold plasma regions: observations and their relation to possible production mechanisms. J. Geophys. Res. 80(7), 1009–1013 (1975) ADSGoogle Scholar
  75. N.C. Maynard, T.L. Aggson, J.P. Heppner, The plasmaspheric electric field as measured by ISEE 1. J. Geophys. Res. 88(A5), 3991–4003 (1983) ADSGoogle Scholar
  76. D.J. McComas, S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, J.W. Griffee, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86(1–4), 563–612 (1998) ADSGoogle Scholar
  77. C.E. McIlwain, Substorm injection boundaries, in Magnetospheric Physics, ed. by B.M. McCormac (Reidel, Dordrecht, 1974), pp. 143–154 Google Scholar
  78. F.A. McNeill, Frequency shifts on whistler mode signals from a stabilized VLF transmitter. Radio Sci. 2, 589–594 (1967) ADSGoogle Scholar
  79. E.V. Mishin, P.A. Puhl-Quinn, SAID: plasmaspheric short circuit of substorm injections. Geophys. Res. Lett. 34, L24101 (2007) ADSGoogle Scholar
  80. A. Nishida, Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J. Geophys. Res. 71(23), 5669–5679 (1966) ADSGoogle Scholar
  81. R.W. Nopper, R.L. Carovillano, Polar-equatorial coupling during magnetically active periods. Geophys. Res. Lett. 5(8), 699–702 (1978) ADSGoogle Scholar
  82. G. Paschmann, J.M. Quinn, R.B. Torbert, H. Vaith, C.E. McIlwain, G. Haerendel, O.H. Bauer, T. Bauer, W. Baumjohann, W. Fillius, M. Förster, S. Frey, E. Georgescu, S.S. Kerr, C.A. Kletzing, H. Matsui, P. Puhl-Quinn, E.C. Whipple, The electron drift instrument on Cluster: overview of first results. Ann. Geophys. 19(10–12), 1273–1288 (2001) ADSCrossRefGoogle Scholar
  83. V. Pierrard, J. Goldstein, N. André, V.K. Jordanova, G.A. Kotova, J.F. Lemaire, M.W. Liemohn, H. Matsui, Recent progress in physics-based models of the plasmasphere. Space Sci. Rev. (2008). This issue Google Scholar
  84. P.A. Puhl-Quinn, H. Matsui, E. Mishin, C. Mouikis, L. Kistler, Y. Khotyaintsev, P.M.E. Décréau, E. Lucek, Cluster and DMSP observations of SAID electric fields. J. Geophys. Res. 112, A05219 (2007) Google Scholar
  85. P.A. Puhl-Quinn, H. Matsui, V.K. Jordanova, Y. Khotyaintsev, P.-A. Lindqvist, An effort to derive an empirically based, inner-magnetospheric electric field model: Merging Cluster EDI and EFW data. J. Atmos. Sol.-Terr. Phys. 70(2–4), 564–573 (2008) Google Scholar
  86. J.M. Quinn, G. Paschmann, N. Sckopke, V.K. Jordanova, H. Vaith, O.H. Bauer, W. Baumjohann, W. Fillius, G. Haerendel, S.S. Kerr, C.A. Kletzing, K. Lynch, C.E. McIlwain, R.B. Torbert, E.C. Whipple, EDI convection measurements at 5–6 R E in the post-midnight region. Ann. Geophys. 17(12), 1503–1512 (1999) ADSGoogle Scholar
  87. J.M. Quinn, G. Paschmann, R.B. Torbert, H. Vaith, C.E. McIlwain, G. Haerendel, O. Bauer, T.M. Bauer, W. Baumjohann, W. Fillius, M. Foerster, S. Frey, E. Georgescu, S.S. Kerr, C.A. Kletzing, H. Matsui, P. Puhl-Quinn, E.C. Whipple, Cluster EDI convection measurements across the high-latitude plasma sheet boundary at midnight. Ann. Geophys. 19(10–12), 1669–1681 (2001) ADSCrossRefGoogle Scholar
  88. B.W. Reinisch, M.B. Moldwin, R.E. Denton, D.L. Gallagher, H. Matsui, V. Pierrard, J. Tu, Augmented empirical models of plasmaspheric density and electric field using IMAGE and CLUSTER data. Space Sci. Rev. (2008). This issue Google Scholar
  89. H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud, J.A. Sauvaud, A. Barthe, J. Bouyssou, Th. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J.L. Médale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. d’Uston, E. Möbius, L.M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C.W. Carlson, D.W. Curtis, C. Ingraham, R.P. Lin, J.P. McFadden, G.K. Parks, T. Phan, V. Formisano, E. Amata, M.B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. Di Lellis, M.F. Marcucci, G. Pallocchia, A. Korth, P.W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E.G. Shelley, S. Fuselier, A.G. Ghielmetti, W. Lennartsson, C.P. Escoubet, H. Balsiger, R. Friedel, J.-B. Cao, R.A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, B. Sonnerup, First multi-spacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment. Ann. Geophys. 19(10–12), 1303–1354 (2001) ADSCrossRefGoogle Scholar
  90. F.J. Rich, W.J. Burke, M.C. Kelley, M. Smiddy, Observations of field-aligned currents in association with strong convection electric fields at subauroral latitudes. J. Geophys. Res. 85(A5), 2335–2340 (1980) ADSGoogle Scholar
  91. A.J. Ridley, G. Lu, C.R. Clauer, V.O. Papitashvili, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. J. Geophys. Res. 103(A3), 4023–4039 (1998) ADSGoogle Scholar
  92. D.E. Rowland, J.R. Wygant, Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J. Geophys. Res. 103(A7), 14959–14964 (1998) ADSGoogle Scholar
  93. B.R. Sandel, R.A. King, W.T. Forrester, D.L. Gallagher, A.L. Broadfoot, C.C. Curtis, Initial results from the IMAGE Extreme Ultraviolet imager. Geophys. Res. Lett. 28(8), 1439–1442 (2001) ADSGoogle Scholar
  94. J.M. Saxton, A.J. Smith, Quiet time plasmaspheric electric fields and plasmasphere–ionosphere coupling fluxes at L=2.5. Planet. Space Sci. 37(3), 283–293 (1989) ADSGoogle Scholar
  95. S. Sazykin, R.W. Spiro, R.A. Wolf, F.R. Toffoletto, N. Tsyganenko, J. Goldstein, M.R. Hairston, Modeling inner magnetospheric electric fields: latest self-consistent results, in The Inner Magnetosphere: Physics and Modeling, ed. by T.I. Pulkkinen, N.A. Tsyganenko, R.H.W. Friedel. Geophysical Monograph Series, vol. 155 (American Geophysical Union, Washington, 2005), pp. 263–269 Google Scholar
  96. L. Scherliess, B.G. Fejer, Storm time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. 102(A11), 24037–24046 (1997) ADSGoogle Scholar
  97. R.W. Schunk, P.M. Banks, W.J.Raitt, Effects of electric fields and other processes upon the nighttime high-latitude F layer. J. Geophys. Res. 81(19), 3271–3282 (1976) ADSGoogle Scholar
  98. M. Smiddy, M.C. Kelley, W. Burke, F. Rich, R. Sagalyn, B. Shuman, R. Hays, S. Lai, Intense poleward-directed electric fields near the ionospheric projection of the plasmapause. Geophys. Res. Lett. 4(11), 543–546 (1977) ADSGoogle Scholar
  99. A.J. Smith, K.H. Yearby, K. Bullough, J.M. Saxton, H.J. Strangeways, N.R. Thomson, Whistler mode signals from VLF transmitters observed at Faraday, Antarctica. Mem. Nat. Inst. Polar Res. 48, 183–195 (1987) ADSGoogle Scholar
  100. C.W. Smith, J. L’Heureux, N.F. Ness, M.H. Acuña, L.F. Burlaga, J. Scheifele, The ACE magnetic fields experiment. Space Sci. Rev. 86(1–4), 613–632 (1998) ADSGoogle Scholar
  101. R.L. Smith, Propagation Characteristics of whistlers trapped in field-aligned columns of enhanced ionization. J. Geophys. Res. 66(11), 3699–3707 (1961) ADSGoogle Scholar
  102. M. Spasojević, J. Goldstein, D.L. Carpenter, U.S. Inan, B.R. Sandel, M.B. Moldwin, B.W. Reinisch, Global response of the plasmasphere to a geomagnetic disturbance. J. Geophys. Res. 108(A9), 1340 (2003) Google Scholar
  103. R.W. Spiro, R.A. Heelis, W.B. Hanson, Rapid subauroral ion drifts observed by Atmospheric Explorer C. Geophys. Res. Lett. 6(8), 657–660 (1979) ADSGoogle Scholar
  104. N.R. Thomson, Electric fields from whistler-mode Doppler shifts. Planet. Space Sci. 24(5), 455–458 (1976) ADSMathSciNetGoogle Scholar
  105. N.R. Thomson, Whistler mode signals: spectrographic group delays. J. Geophys. Res. 86(A6), 4795–4802 (1981) ADSGoogle Scholar
  106. N.A. Tsyganenko, A model of the near magnetosphere with a dawn–dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 1179 (2002) Google Scholar
  107. N.A. Tsyganenko, D.P. Stern, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101(A12), 27187–27198 (1996) ADSGoogle Scholar
  108. C. Vallat, I. Dandouras, M. Dunlop, A. Balogh, E. Lucek, G.K. Parks, M. Wilber, E.C. Roelof, G. Chanteur, H. Rème, First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data. Ann. Geophys. 23(5), 1849–1865 (2005) ADSCrossRefGoogle Scholar
  109. V.M. Vasyliunas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, ed. by B.M. McCormac (Reidel, Dordrecht, 1970), pp. 60–71 Google Scholar
  110. R.H. Wand, J.V. Evans, Seasonal and magnetic activity variations of ionospheric electric fields over Millstone Hill. J. Geophys. Res. 86(A1), 103–118 (1981) ADSGoogle Scholar
  111. D.R. Weimer, An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event. J. Geophys. Res. 106(A1), 407–416 (2001) ADSGoogle Scholar
  112. R.A. Wolf, Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res. 75(25), 4677–4698 (1970) ADSGoogle Scholar
  113. R.A. Wolf, S. Sazykin, X. Xing, R.W. Spiro, F.R. Toffoletto, D.L. DeZeeuw, T.I. Gombosi, J. Goldstein, Direct effects of the IMF on the inner magnetosphere, in Inner Magnetosphere Interactions: New Perspectives from Imaging, ed. by J.L. Burch, M. Schulz, H. Spence. Geophysical Monograph Series, vol. 159 (American Geophysical Union, Washington, 2005), pp. 127–140 Google Scholar
  114. J. Wygant, D. Rowland, H.J. Singer, M. Temerin, F. Mozer, M.K. Hudson, Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J. Geophys. Res. 103(A12), 29527–29544 (1998) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, BV 2009

Authors and Affiliations

  • Hiroshi Matsui
    • 1
  • John C. Foster
    • 2
  • Donald L. Carpenter
    • 3
  • Iannis Dandouras
    • 4
  • Fabien Darrouzet
    • 5
  • Johan De Keyser
    • 5
  • Dennis L. Gallagher
    • 6
  • Jerry Goldstein
    • 7
  • Pamela A. Puhl-Quinn
    • 1
  • Claire Vallat
    • 8
  1. 1.Space Science Center, Morse HallUniversity of New Hampshire (UNH)DurhamUSA
  2. 2.Massachusetts Institute of Technology (MIT)WestfordUSA
  3. 3.Space Telecommunications and Radioscience Laboratory (STAR)StanfordUSA
  4. 4.Centre d’Etude Spatiale des Rayonnements (CESR)ToulouseFrance
  5. 5.Belgian Institute for Space Aeronomy (BIRA-IASB)BrusselsBelgium
  6. 6.NASA Marshall Space Flight Center (MSFC)HuntsvilleUSA
  7. 7.Southwest Research Institute (SWRI)San AntonioUSA
  8. 8.European Space Agency (ESA)VillafrancaSpain

Personalised recommendations