Skip to main content

Just MIP it!

  • Chapter
  • First Online:
Matheuristics

Part of the book series: Annals of Information Systems ((AOIS,volume 10))

Abstract

Modern Mixed-Integer Programming (MIP) solvers exploit a rich arsenal of tools to attack hard problems. It is idely accepted by the OR community that the solution of very hard MIPs can take advantage from the solution of a series of time-consuming auxiliary Linear Programs (LPs) intended to enhance the performance of the overall MIP solver. For instance, auxiliary LPs may be solved to generate powerful disjunctive cuts, or to implement a strong branching policy. Also well established is the fact that finding good-quality heuristic MIP solutions often requires a computing time that is just comparable to that needed to solve the LP relaxations. So, it makes sense to think of a new generation of MIP solvers where auxiliary MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim of bringing the MIP technology under the chest of the MIP solver itself. This leads to the idea of “translating into a MIP model” (MIPping) some crucial decisions to be taken within a MIP algorithm (How to cut? How to improve the incumbent solution? Is the current node dominated?). In this paper we survey a number of successful applications of the above approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization, 4:77–86, 2007.

    Article  Google Scholar 

  2. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters, 34:361–372, 2006. Problems available at http://miplib.zib.de.

    Article  Google Scholar 

  3. E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem problem, IISs and IIS-hypergraphs. Mathematical Programming, 95:533–554, 2003.

    Article  Google Scholar 

  4. E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A new heuristic for pure 0–1 programs. Operations Research, 49:207–225, 2001.

    Article  Google Scholar 

  5. E. Balas and C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming. Management Science, 26:86–96, 1980.

    Article  Google Scholar 

  6. E. Balas and M. Perregaard. Lift-and-project for mixed 0-1 programming: Recent progress. Discrete Applied Mathematics, 123:129–154, 2002.

    Article  Google Scholar 

  7. E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming, 113:219–240, 2008.

    Article  Google Scholar 

  8. E. Balas, S. Schmieta, and C. Wallace. Pivot and shift — a mixed integer programming heuristic. Discrete Optimization, 1:3–12, 2004.

    Article  Google Scholar 

  9. R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

    Google Scholar 

  10. P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected Chvátal–Gomory cuts for mixed integer linear programs. Mathematical Programming, 113:241–257, 2008.

    Article  Google Scholar 

  11. A. Caprara and A.N. Letchford. On the separation of split cuts and related inequalities. Mathematical Programming, 94:279–294, 2002.

    Article  Google Scholar 

  12. J.W. Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing, 13:210–223, 2001.

    Article  Google Scholar 

  13. V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 5:305–337, 1973.

    Article  Google Scholar 

  14. G. Codato and M. Fischetti. Combinatorial Benders cuts. In D. Bienstock and G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, IPCO X, volume 3064 of Lecture Notes in Computer Science, pages 178–195. Springer, 2004.

    Google Scholar 

  15. W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer programming problems. Mathematical Programming, 47:155–174, 1990.

    Article  Google Scholar 

  16. G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Programming, 112:3–44, 2008.

    Article  Google Scholar 

  17. G. Cornuéjols and Y. Li. On the rank of mixed 0,1 polyhedra. Mathematical Programming, 91:391–397, 2002.

    Article  Google Scholar 

  18. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.

    Article  Google Scholar 

  19. S. Dash, O. Günlük, and A. Lodi. On the MIR closure of polyhedra. In M. Fischetti and D.P. Williamson, editors, Integer Programming and Combinatorial Optimization, IPCO XII, volume 4513 of Lecture Notes in Computer Science, pages 337–351. Springer, 2007.

    Google Scholar 

  20. S. Dash, O. Günlük, and A. Lodi. MIR closures of polyhedral sets. Mathematical Programming, DOI 10.1007/s10107-008-0225-x, 2008.

    Google Scholar 

  21. Double-Click sas. personal communication, 2001.

    Google Scholar 

  22. J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer programming. Journal of Heuristics, 13:471–503, 2007.

    Article  Google Scholar 

  23. F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron. Combinatorica, 19:297–300, 1999.

    Article  Google Scholar 

  24. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming, 104:91–104, 2005.

    Article  Google Scholar 

  25. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.

    Article  Google Scholar 

  26. M. Fischetti and A. Lodi. MIPping Closures: An instant survey. Graphs and Combinatorics, 23:233–243, 2007.

    Article  Google Scholar 

  27. M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical Programming, 110:3–20, 2007.

    Article  Google Scholar 

  28. M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Computers & Operations Research, 35:1436–1445, 2008.

    Article  Google Scholar 

  29. M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks, 44:61–72, 2004.

    Article  Google Scholar 

  30. M. Fischetti and P. Toth. A New Dominance Procedure for Combinatorial Optimization Problems. Operations Research Letters, 7:181–187, 1988.

    Article  Google Scholar 

  31. J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities. ORSA Journal on Computing, 2:61–63, 1990.

    Google Scholar 

  32. F. Glover and M. Laguna. General purpose heuristics for integer programming – part I. Journal of Heuristics, 2:343–358, 1997.

    Article  Google Scholar 

  33. F. Glover and M. Laguna. General purpose heuristics for integer programming – part II. Journal of Heuristics, 3:161–179, 1997.

    Article  Google Scholar 

  34. F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

    Google Scholar 

  35. R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64:275–278, 1958.

    Article  Google Scholar 

  36. R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand Corporation, 1960.

    Google Scholar 

  37. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 1988.

    Google Scholar 

  38. P. Hansen, N. Mladenović, and D. Urosevic. Variable neighborhood search and local branching. Computers & Operations Research, 33:3034–3045, 2006.

    Article  Google Scholar 

  39. F.S. Hillier. Efficient heuristic procedures for integer linear programming with an interior. Operations Research, 17:600–637, 1969.

    Article  Google Scholar 

  40. T. Ibaraki, T. Ohashi, and F. Mine. A heuristic algorithm for mixed-integer programming problems. Mathematical Programming Study, 2:115–136, 1974.

    Google Scholar 

  41. ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007. http://www.ilog.com.

  42. G.W. Klau. personal communication, 2002.

    Google Scholar 

  43. A. Løkketangen. Heuristics for 0-1 mixed-integer programming. In P.M. Pardalos and M.G.C. Resende, editors, Handbook of Applied Optimization, pages 474–477. Oxford University Press, 2002.

    Google Scholar 

  44. A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems using tabu search. European Journal of Operational Research, 106:624–658, 1998.

    Article  Google Scholar 

  45. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.

    Article  Google Scholar 

  46. S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, 1990.

    Google Scholar 

  47. A.J. Miller. personal communication, 2003.

    Google Scholar 

  48. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations Research, 24:1097–1100, 1997.

    Article  Google Scholar 

  49. J.L. Nazareth. The homotopy principle and algorithms for linear programming. SIAM Journal on Optimization, 1:316–332, 1991.

    Article  Google Scholar 

  50. G. Nemhauser and L. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed integer programs. Mathematical Programming, 46:379–390, 1990.

    Article  Google Scholar 

  51. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, 1982.

    Google Scholar 

  52. D. Pisinger. Where are the hard knapsack problems? Computers & Operations Research, 32:2271–2284, 2005.

    Article  Google Scholar 

  53. E. Rothberg. personal communication, 2002.

    Google Scholar 

  54. D. Salvagnin. A dominance procedure for integer programming. Master’s thesis, University of Padua, October 2005.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Future and Emerging Technologies unit of the EC (IST priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Fischetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischetti, M., Lodi, A., Salvagnin, D. (2009). Just MIP it!. In: Maniezzo, V., Stützle, T., Voß, S. (eds) Matheuristics. Annals of Information Systems, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1306-7_2

Download citation

Publish with us

Policies and ethics