Advertisement

Solid-State, Dye, and Semiconductor Lasers

Chapter
  • 7.9k Downloads

Abstract

In this chapter, the most important types of lasers involving high density active media are considered, namely solid-state, dye and semiconductor lasers. The chapter concentrates on those examples that are in widest use and whose characteristics are representative of a whole class of lasers. The main emphasis here is on stressing the physical behavior of the laser and relating this behavior to the general concepts developed in the previous chapters. Some engineering details are also provided with the main aim again of helping to provide for a better physical insight into the behavior of the particular laser. To complete the picture, some data relating to laser performances (e.g., oscillating wavelength(s), output power or energy, wavelength tunability, etc.) are also included to help providing some indication of the laser’s applicability. For each laser, after some introductory comments, the following items are generally covered: (1) Relevant energy levels; (2) excitation mechanisms; (3) characteristics of the laser transition(s); (4) engineering details of the laser structure(s); (5) characteristics of the output beam; (6) applications.

Keywords

Pump Power Active Layer Semiconductor Laser Laser Action Multiple Quantum Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. A. Kaminski, Crystalline Lasers: Physical Processes and Operating Schemes, (CRC Press Inc. Boca Raton, FL 1996)Google Scholar
  2. 2.
    T. H. Maiman, Stimulated Optical Radiation in Ruby Masers, Nature, 187, 493 (1960)CrossRefADSGoogle Scholar
  3. 3.
    T. H. Maiman, Optical Maser Action in Ruby, Brit. Commun. Electron., 7, 674 (1960)Google Scholar
  4. 4.
    W. Koechner, Solid-State Laser Engineering, fourth edition (Springer Berlin 1996), Sects. 2.2 and 3.6.1.Google Scholar
  5. 5.
    Ref. [4], Sects. 2.3.1. and 3.6.3.Google Scholar
  6. 6.
    E. Snitzer and G.C. Young, Glass Lasers, in Lasers, ed. by A. K. Levine (Marcel Dekker, New York, 1968), Vol. 2, Chap. 2Google Scholar
  7. 7.
    Ref. [4], Sect. 2.3.4Google Scholar
  8. 8.
    T. Y. Fan, Diode-Pumped Solid State Lasers, in Laser Sources and Applications, ed. by A. Miller and D. M. Finlayson (Institute of Physics, Bristol, 1996) pp 163–193Google Scholar
  9. 9.
    P. Lacovara et al., Room-Temperature Diode-Pumped Yb:YAG Laser, Opt. Lett., 16, 1089–1091 (1991)CrossRefADSGoogle Scholar
  10. 10.
    H. Bruesselbach and D. S. Sumida, 69-W-average-power Yb:YAG Laser, Opt. Lett., 21, 480–482 (1996)CrossRefADSGoogle Scholar
  11. 11.
    G. Huber, Solid-State Laser Materials, in Laser Sources and Applications, ed. by A. Miller and D. M. Finlayson (Institute of Physics, Bristol, 1996) pp. 141–162Google Scholar
  12. 12.
    E. V. Zharikov et al., Sov. J. Quantum Electron., 4, 1039 (1975)CrossRefADSGoogle Scholar
  13. 13.
    S. J. Hamlin, J. D. Myers, and M. J. Myers, High Repetition Rate Q-Switched Erbium Glass Lasers, in Eyesafe Lasers: Components, Systems, and Applications ed. by A. M. Johnson, SPIE, 1419, 100–104 (1991)Google Scholar
  14. 14.
    S. Taccheo, P. Laporta, S. Longhi, O. Svelto, C. Svelto, Diode-Pumped Bulk Erbium-Ytterbium Lasers, Appl. Phys., B63, 425–436 (1996)CrossRefADSGoogle Scholar
  15. 15.
    D. Sliney and M. Wolbarsht, Safety with Lasers and other Optical Sources (Plenum Press, New York 1980)Google Scholar
  16. 16.
    T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, Spectroscopy and Diode Laser-Pumped Operation of Tm, Ho:YAG, IEEE J. Quantum Electron., QE-24, 924–933 (1988)Google Scholar
  17. 17.
    D. C. Hanna, Fibre Lasers, in Laser Sources and Applications, ed. by A. Miller and D. M. Finlayson (Institute of Physics, Bristol, 1996) pp. 195–208Google Scholar
  18. 18.
    E. Snitzer, Optical Maser Action on Nd3 + in a Barium Crown Glass, Phys. Rev. Lett., 7, 444–446 (1961)CrossRefADSGoogle Scholar
  19. 19.
    J. C. Walling, O.G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, Tunable Alexandrite Lasers, IEEE J. Quantum Electron., QE-16, 1302–1315 (1980)Google Scholar
  20. 20.
    L. F. Mollenauer, Color Center Lasers, in Laser Handbook, ed. by M.L. Stitch and M. Bass (North Holland, Amsterdam, 1985), Vol. 4, pp. 143–228CrossRefGoogle Scholar
  21. 21.
    P. F. Moulton, Spectroscopy and Laser Characteristics of Ti : Al2O3, J. Opt. Soc. Am. B, 3, 125–132 (1986)CrossRefADSGoogle Scholar
  22. 22.
    Günther Huber, Solid-State Laser Materials: Basic Properties and New Developments, in Solid State Lasers: New Developments and Applications, ed. by M. Inguscio and R. Wallenstein (Plenum Press New York 1993) pp. 67–81Google Scholar
  23. 23.
    P. Albers, E. Stark, and G. Huber, Continuous-wave Laser Operation and Quantum Efficiency of Titanium-Doped Sapphire, J. Opt. Soc. Am. B, 3, 134–139 (1986)CrossRefADSGoogle Scholar
  24. 24.
    S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, Laser Performance of LiSrAlF6 : Cr3 + , J. Appl. Phys., 66, 1051–1055 (1989)CrossRefADSGoogle Scholar
  25. 25.
    S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, LiCaAlF6 : Cr3 + : A Promising New Solid-State Laser Material, IEEE J. Quantum Electron., QE-24, 2243–2252 (1988)Google Scholar
  26. 26.
    Dye Lasers, second edition., ed. by F. P. Schäfer (Springer-Verlag, Berlin, 1977)Google Scholar
  27. 27.
    H. D. Försterling and H. Kuhn, Physikalische Chemie in Experimenten, Ein Praktikum, (Verlag Chemie, Weinheim, 1971)Google Scholar
  28. 28.
    J. T. Verdeyen, Laser Electronics, third edition (Prentice-Hall International Inc., Englewood Cliffs, N. J., 1995) Fig. 10.19Google Scholar
  29. 29.
    P. P. Sorokin and J. R. Lankard, Stimulated Emission Observed from an Organic Dye, Chloro-Aluminum Phthalocyanine, IBM J. Res. Dev., 10, 162 (1966)CrossRefGoogle Scholar
  30. 30.
    F. P. Schäfer, F. P. W. Schmidth, and J. Volze, Organic Dye Solution Laser, Appl. Phys. Lett., 9, 306–308 (1966)CrossRefADSGoogle Scholar
  31. 31.
    Semiconductor Lasers: Past, Present, Future ed. by G. P. Agrawal (AIP Press, Woodbury, New York 1995).Google Scholar
  32. 32.
    G. P. Agrawal and N.K. Dutta, Long Wavelength Semiconductor Lasers (Chapman and Hall, New York, 1986).CrossRefGoogle Scholar
  33. 33.
    J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Science, 264, 553 (1994)CrossRefADSGoogle Scholar
  34. 34.
    N. G. Basov, O. N. Krokhin, and Y. M. Popov, Production of Negative Temperature States in p-n Junctions of Degenerate Semiconductors, J. Exp. Theoret. Phys., 40, 1320 (1961)Google Scholar
  35. 35.
    R. N. Hall, G. E. Fenner, J. D. Kinhsley, F. H. Dills, and G. Lasher, Coherent Light Emission from GaAs Junctions, Phys. Rev. Lett., 9, 366–368 (1962)CrossRefADSGoogle Scholar
  36. 36.
    M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dills, and G. Lasher, Stimulated Emission of Radiation from GaAs p-n Junction, Appl. Phys. Lett., 1, 62 (1962)CrossRefADSGoogle Scholar
  37. 37.
    N. Holonyak, Jr. and S. F. Bevacqua, Coherent (Visible) Light Emission from Ga(As1 − xPx) Junctions, Appl. Phys. Lett., 1, 82 (1962)CrossRefADSGoogle Scholar
  38. 38.
    T. M. Quist, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, R. H. Rediker, and H. J. Zeiger, Semiconductor Maser of GaAs, Appl. Phys. Lett., 1, 91 (1962)CrossRefADSGoogle Scholar
  39. 39.
    Z. I. Alferov, V. M. Andreev, V. I. Korolkov, E. L. Portnoi, and D. N. Tretyakov, Coherent Radiation of Epitaxial Heterjunction Structures in the AlAs-GaAs System, Soviet. Phys. Semicond., 2, 1289 (1969)Google Scholar
  40. 40.
    I. Hayashi, M. B. Panish, and P. W. Foy, A Low-Threshold Room-Temperature Injection Laser, IEEE J. Quantum Electron., QE-5, 211 (1969)Google Scholar
  41. 41.
    H. Kressel and H. Nelson, Close Confinment Gallium Arsenide p-n Junction Laser with reduced Optical Losses at Room Temperature, RCA Rev., 30, 106 (1969)Google Scholar
  42. 42.
    N. Chinone, H. Nakashima, I. Ikushima, and R. Ito, Semiconductor Lasers with a Thin Active Layer ( > 0. 1 μm) for Optical Communications, Appl. Opt., 17, 311–315 (1978)Google Scholar
  43. 43.
    D. Botez, Analytical Approximation of the Radiation Confinement Factor for the TE0 Mode of a Double Heterojunction Laser, IEEE J. Quantum Electron., QE-14, 230–232 (1978)Google Scholar
  44. 44.
    Quantum Well Lasers, ed. by Peter S. Zory (Academic Press, Boston 1993)Google Scholar
  45. 45.
    Ref. [32], Fig. 9.8 and 9.10.Google Scholar
  46. 46.
    J. J. Coleman, Quantum-Well Heterostructure Lasers, in Semiconductor Lasers: Past, Present, Future ed. by G. P. Agrawal (AIP Press, Woodbury, New York 1995) Fig. 1.6.Google Scholar
  47. 47.
    H. Kogelnik and C. V. Shank, Stimulated Emission in a Periodic Structure, Appl. Phys. Lett., 18, 152–154 (1971)CrossRefADSGoogle Scholar
  48. 48.
    Ref. [32] Chap. 7Google Scholar
  49. 49.
    N. Chinone and M. Okai, Distributed Feed-Back Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future ed. by G. P. Agrawal (AIP Press, Woodbury, New York 1995), Chap. 2, pp. 28–70.Google Scholar
  50. 50.
    H. A. Haus and C. V. Shank, Antisymmetric Taper of Distributed Feedback Lasers, IEEE J. Quantum Electron., QE-12, 532 (1976)Google Scholar
  51. 51.
    C. J. Chang-Hasnain, Vertical-Cavity Surface-Emitting Lasers, in Semiconductor Lasers: Past, Present, Future ed. by G. P. Agrawal (AIP Press, Woodbury, New York 1995), Chap. 4, pp. 110–144.Google Scholar
  52. 52.
    C. J. Chang-Hasnain, J. P. Harbison, C.-H. Zah, M. W. Maeda, L. T. Florenz, N. G. Stoffel, and T.-P. Lee, Multiple Wavelength Tunable Surface-Emitting Laser Array, IEEE J. Quantum Electron., QE-27, 1368 (1991)Google Scholar
  53. 53.
    G.-I. Hatakoshi, Visible Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future ed. by G. P. Agrawal (AIP Press, Woodbury, New York 1995), Chap. 6, pp. 181–207Google Scholar
  54. 54.
    S. Nakamura et al., Jpn. J. Appl. Phys., 35, L74 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipto. FisicaPolitecnico di MilanoMilanoItaly

Personalised recommendations