Gas, Chemical, Free Electron, and X-Ray Lasers



In this chapter, the most important types of lasers involving low density active media are considered, namely gas, chemical and free electron lasers. Some considerations on X-ray lasers involving highly ionized plasmas will also be presented. The main emphasis, again, is to stress the physical behavior of the laser and to relate this behavior to the general concepts developed in the previous chapters. Some engineering details are also presented with the main intention again of providing for a better physical insight into the behavior of the particular laser. To complete the picture, some data relating to laser performances (e.g., oscillation wavelength(s), output power or energy, wavelength tunability, etc.) are also included to help provide some indication of the laser’s field of application. For each laser, after some introductory comments, the following items are generally covered: (1) Relevant energy levels; (2) excitation mechanisms; (3) characteristics of the laser transition(s); (4) engineering details relating to the laser structure(s); (5) characteristics of the output beam; (6) applications.


Vibrational Level Laser Action Population Inversion Amplify Spontaneous Emission Lower Laser Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Arrathoon, Helium-Neon Lasers and the Positive Column, in Lasers, ed. by A. K. Levine and A. J. De Maria (Marcel Dekker, New York, 1976), Vol. 4, Chap. 3.Google Scholar
  2. 2.
    W. B. Bridges, Atomic and Ionic Gas Lasers, in Methods of Experimental Physics, ed. by C. L. Tang (Academic, New York, 1979), Vol. 15, pp. 33–151.Google Scholar
  3. 3.
    A. Javan, W. R. Bennett, and D. H. Herriott, Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture, Phys. Rev. Lett., 6, 106 (1961).CrossRefADSGoogle Scholar
  4. 4.
    C. E. Webb, Metal Vapor Lasers: Recent Advances and Applications, in Gas Flow and Chemical Lasers, Springer Proceedings in Physics N. 15, ed. by S. Rosenwork (Springer-Verlag, Berlin, 1987), pp. 481–494.Google Scholar
  5. 5.
    C. C. Davis and T. A. King, Gaseous Ion Lasers, in Advances in Quantum Electronics, ed. by D. W. Goodwin (Academic, New York, 1975), Vol. 3, pp. 170–437.Google Scholar
  6. 6.
    D. H. Dunn and J. N. Ross, The Argon Ion Laser, in Progress in Quantum Electronics, ed. by J. H. Sanders and S. Stenholm (Pergamon, London, 1977), Vol. 4, pp. 233–270.Google Scholar
  7. 7.
    W. B. Bridges, Laser Oscillation in Singly Ionized Argon in the Visible Spectrum, Appl. Phys. Letters 4, 128 (1964).Google Scholar
  8. 8.
    P. K. Cheo, CO2 Lasers, in Lasers, ed. by A. K. Levine and A. J. De Maria (Marcel Dekker, New York, 1971), Vol. 3, Chap. 2.Google Scholar
  9. 9.
    A. J. De Maria, Review of High-Power CO2 Lasers, in Principles of Laser Plasmas, ed. by G. Bekefi (Wiley-Interscience, New York, 1976), Chap. 8.Google Scholar
  10. 10.
    C. K. N. Patel, W. L. Faust, and R. A. Mc Farlane, CW Laser Action on Rotational Transitions of the \({\Sigma }_{u}^{+} \rightarrow {\Sigma }_{g}^{+}\) Vibrational Band of CO2, Bull. Am. Phys. Soc. 9, 500 (1964).Google Scholar
  11. 11.
    D. R. Hall and C. A. Hill, Radiofrequency-Discharge-Excited CO2 Lasers, in Handbook of Molecular Lasers ed. by P. Cheo (Marcel Dekker, New York, 1987) Chapt. 3.Google Scholar
  12. 12.
    K. M. Abramski, A. D. Colley, H. J. Baker, and D. R. Hall, Power Scaling of Large-Area Transverse Radiofrequency Discharge CO2 Lasers, Appl. Phys. Letters, 54, 1833–1835 (1989).CrossRefADSGoogle Scholar
  13. 13.
    P. E. Jackson, H. J. Baker, and D. R. Hall, CO2 Large-Area Discharge Laser Using an Unstable-Waveguide Hybrid Resonator, Appl. Phys. Letters, 54, 1950–1952 (1989).CrossRefADSGoogle Scholar
  14. 14.
    R. E. Center, High-Power, Efficient Electrically-Excited CO Laser, in Laser Handbook, ed. by M. L. Stitch (North-Holland, Amsterdam, 1979), Vol. 3, pp. 89–133.Google Scholar
  15. 15.
    C. S. Willet, An Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon-Press, Oxford, 1974), Secs. 6.2.1 and 6.2.3.Google Scholar
  16. 16.
    N. G. Basov, V. A. Danilychev, and Yu. M. Popov, Stimulated Emission in the Vacuum Ultraviolet Region, Soviet J. Quantum Electron., 1, 18 (1971).Google Scholar
  17. 17.
    J. J. Ewing, Excimer Lasers, in Laser Handbook, ed. by M. L. Stitch (North-Holland, Amsterdam, 1979), Vol. 3, pp. 135–197.Google Scholar
  18. 18.
    A. N. Chester, Chemical Lasers, in High-Power Gas Lasers, ed. by E. R. Pike (The Institute of Physics, Bristol and London, 1975), pp. 162–221.Google Scholar
  19. 19.
    C. J. Ultee, Chemical and Gas-Dynamic Lasers, in Laser Handbook, ed. by M. L. Stitch and M. Bass (North-Holland, Amsterdam, 1985), Vol. 3, pp. 199–287.Google Scholar
  20. 20.
    G. Dattoli and R. Renieri, Experimental and Theoretical Aspects of the Free-Electron Lasers, in Laser Handbook, ed. by M. L. Stitch (North-Holland, Amsterdam, 1979), Vol. 4, pp. 1–142.Google Scholar
  21. 21.
    D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, First Operation of a Free-Electron Laser, Phys. Rev. Lett. 38, 892 (1977).CrossRefADSGoogle Scholar
  22. 22.
    R. C. Elton, X-Ray Lasers (Acedemic, Boston 1990).Google Scholar
  23. 23.
    D. L. Matthews et. al., Demonstration of a Soft X-ray Amplifier, Phys. Rev Lett. 54, 110 (1985).Google Scholar
  24. 24.
    X-Ray Lasers 1996, ed. by S. Svanberg and C. G. Wahlstrom, Institute of Physics Conference Series N. 151 (Institute of Physics, Bristol 1996).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipto. FisicaPolitecnico di MilanoMilanoItaly

Personalised recommendations