Skip to main content

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

  • 1081 Accesses

Abstract

Francisella tularensis is a Gram-negative, facultative aerobic coccobacillus and the etiologic agent of tularemia. Historically, it has been referred to as “rabbit fever,” “deer-fly fever,” and “market men's disease” (Penn, 2005). Tularemia in the United States is a seldom-diagnosed zoonosis that causes disease mostly in animals, occasionally infecting people who come into contact with the organism through a natural reservoir, a sick or dead animal, or are bitten by an arthropod vector. Previously occurring as sporadic epidemics, its incidence has decreased substantially since the 1950s (Penn, 2005). Although F. tularensis is one of the most infectious pathogens known, natural human cases of tularemia are uncommon and do not appear to confer a selective advantage in the larger context of the pathogen's evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd, H., Johansson, T., Golovliov, I., Sandstrom, G., and Forsman, M. (2003). Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69:600–606.

    Article  PubMed  CAS  Google Scholar 

  • Avery, F.W., and Barnett, T.B. (1967). Pulmonary tularemia. A report of five cases and consideration of pathogenesis and terminology. Am. Rev. Respir. Dis. 95:584–591.

    PubMed  CAS  Google Scholar 

  • Baker, C.N., Hollis, D.G., and Thornsberry, C. (1985). Antimicrobial susceptibility testing of Fran-cisella tularensis with a modified Mueller-Hinton broth. J. Clin. Microbiol. 22:212–215.

    PubMed  CAS  Google Scholar 

  • Bernard, K., Tessier, S., Winstanley, J., Chang, D., and Borczyk, A. (1994). Early recognition of atypical Francisella tularensis strains lacking a cysteine requirement. J. Clin. Microbiol. 32:551–553.

    PubMed  CAS  Google Scholar 

  • Boudreau, R.P., and Dennis, J.M. (1957). Pleuropulmonary tularemia: its roentgen manifestations. Radiology 68:25–30.

    PubMed  CAS  Google Scholar 

  • Broekhuijsen, M., Larsson, P., Johansson, A., Bystrom, M., Eriksson, U., Larsson, E., Prior, R.G., Sjostedt, A., Titball, R.W., and Forsman, M. (2003). Genome-wide DNA microarray analysis of Francisella tularensisstrains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 41:2924–2931.

    Article  CAS  Google Scholar 

  • Buchanan, T.M., Brooks, G.F., and Brachman, P.S. (1971). The tularemia skin test. 325 skin tests in 210 persons: serologic correlation and review of the literature. Ann. Intern. Med. 74:336–343.

    PubMed  CAS  Google Scholar 

  • Burke, D.S. (1977). Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J. Infect. Dis. 135:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control. (2000). Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm. Rep. 49:1–14.

    Google Scholar 

  • Centers for Disease Control. (2001). Laboratory Response Network (LRN): Level A laboratory procedures for identification of Francisella tularensis. Accessed June 1, 2003, Atlanta, (updated December 13, 2001): www.bt.cdc.gov/Agent/Tularemia/ftu_la_cp_121301.pdf.

  • Centers for Disease Control. (2002a). Outbreak of tularemia among commercially distributed prairie dogs, 2002. MMWR Morb. Mortal. Wkly. Rep. 51:688–699.

    Google Scholar 

  • Centers for Disease Control. (2002b). Tularemia—United States, 1990–2000. MMWR Morb. Mortal. Wkly. Rep. 51:181–184.

    Google Scholar 

  • Chang, M.H., Glynn, M.K., and Groseclose, S.L. (2003). Endemic, notifiable bioterrorism-related diseases, United States, 1992–1999. Emerg. Infect. Dis. 9:556–564.

    Article  PubMed  Google Scholar 

  • Chen, W., Shen, H., Webb, A., KuoLee, R., and Conlan, J.W. (2003). Tularemia in BALB/c and C57BL/6 mice vaccinated with Francisella tularensis LVS and challenged intradermally, or by aerosol with virulent isolates of the pathogen: protection varies depending on pathogen virulence, route of exposure, and host genetic background. Vaccine 21:3690–3700.

    Article  PubMed  Google Scholar 

  • Chocarro, A., Gonzalez, A., and Garcia, I. (2000). Treatment of tularemia with ciprofloxacin. Clin. Infect. Dis. 31:623.

    Article  PubMed  CAS  Google Scholar 

  • Christopher, G.W., Cieslak, T.J., Pavlin, J.A., and Eitzen, E.M., Jr. (1997). Biological warfare. A historical perspective. J.A.M.A. 278:412–417.

    Article  PubMed  CAS  Google Scholar 

  • Chu, M.C., and Weyant, R.S. (2003). Francisella and Brucella. In: Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A., and Yolken, R.H. (eds.), Manual of Clinical Microbiology, vol. 1, 8th ed. ASM Press, Washington, D.C., pp. 789–808.

    Google Scholar 

  • Conlan, J.W., Chen, W., Shen, H., Webb, A., and KuoLee, R. (2003). Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb. Pathog. 34:239–248.

    Article  PubMed  Google Scholar 

  • Conlan, J.W., KuoLee, R., Shen, H., and Webb, A. (2002a). Different host defences are required to protect mice from primary systemic vs pulmonary infection with the facultative intracellular bacterial pathogen, Francisella tularensis LVS. Microb. Pathog. 32:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Conlan, J.W., Shen, H., Webb, A., and Perry, M.B. (2002b). Mice vaccinated with the O-antigen of Francisella tularensis LVS lipopolysaccharide conjugated to bovine serum albumin develop varying degrees of protective immunity against systemic or aerosol challenge with virulent type A and type B strains of the pathogen. Vaccine 20:3465–3471.

    Article  PubMed  CAS  Google Scholar 

  • Conley, J., Yang, H., Wilson, T., Blasetti, K., Di Ninno, V., Schnell, G., and Wong, J.P. (1997). Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice. Antimicrob. Agents Chemother. 41:1288–1292.

    PubMed  CAS  Google Scholar 

  • Cowley, S.C., and Elkins, K.L. (2003). Multiple T cell subsets control Francisella tularensis LV S intracellular growth without stimulation through macrophage interferon gamma receptors. J. Exp. Med. 198:379–389.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, S.C., Myltseva, S.V., and Nano, F.E. (1996). Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20:867–874.

    Article  PubMed  CAS  Google Scholar 

  • Cross, J.T., Jr., Schutze, G.E., and Jacobs, R.F. (1995). Treatment of tularemia with gentamicin in pediatric patients. Pediatr. Infect. Dis. J. 14:151–152.

    Article  PubMed  Google Scholar 

  • Culkin, S.J., Rhinehart-Jones, T., and Elkins, K.L. (1997). A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J. Immunol. 158:3277–3284.

    PubMed  CAS  Google Scholar 

  • Cunha, B.A. (2002). Anthrax, tularemia, plague, ebola or smallpox as agents of bioterrorism: recognition in the emergency room. Clin. Microbiol. Infect. 8:489–503.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrand, S., Ringertz, O., and Zetterberg, B. (1971). Airborne tularemia in Sweden. Scand. J. Infect. Dis. 3:7–16.

    PubMed  CAS  Google Scholar 

  • Dembek, Z.F., Buckman, R.L., Fowler, S.K., and Hadler, J.L. (2003). Missed sentinel case of naturally occurring pneumonic tularemia outbreak: lessons for detection of bioterrorism. J. Am. Board. Fam. Pract. 16:339–342.

    Article  PubMed  Google Scholar 

  • Dennis, D.T., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Fine, A.D., Friedlander, A.M., Hauer, J., Layton, M., Lillibridge, S.R., McDade, J.E., Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., and Tonat, K. (2001). Tularemia as a biological weapon: medical and public health management. JAMA. 285:2763–2773.

    Article  PubMed  CAS  Google Scholar 

  • Dienst, F.T., Jr. (1963). Tularemia: a perusal of three hundred thirty-nine cases. J. Louisiana State Med. Soc. 115:114–124.

    Google Scholar 

  • Dolan, S.A., Dommaraju, C.B., and DeGuzman, G.B. (1998). Detection of Francisella tularensis in clinical specimens by use of polymerase chain reaction. Clin. Infect. Dis. 26:764–765.

    Article  PubMed  CAS  Google Scholar 

  • Drabick, J.J., Narayanan, R.B., Williams, J.C., Leduc, J.W., and Nacy, C.A. (1994). Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine. Am. J. Med. Sci. 308:83–87.

    Article  PubMed  CAS  Google Scholar 

  • Dreisbach, V.C., Cowley, S., and Elkins, K.L. (2000). Purified lipopolysaccharide from Francisella tularensis live vaccine strain (LVS) induces protective immunity against LVS infection that requires B cells and gamma interferon. Infect. Immun. 68:1988–1996.

    Article  PubMed  CAS  Google Scholar 

  • Eigelsbach, H.T., and Downs, CM. (1961). Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig. J. Immunol. 87:415–425.

    PubMed  CAS  Google Scholar 

  • Eigelsbach, H.T., Hornick, R.B., and Tulis, J.J. (1967). Recent studies on live tularemia vaccine. Med. Ann. Dist. Columbia 36:282–286.

    PubMed  CAS  Google Scholar 

  • Eigelsbach, H.T., and McGann, V.G. (1984). Genus Francisella Doroféev 1947, 176AL. In: Krieg, N.R., and Holt, J.G. (eds.), Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, pp. 394–399.

    Google Scholar 

  • Elkins, K.L., Bosio, CM., and Rhinehart-Jones, T.R. (1999). Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect. Immun. 67:6002–6007.

    PubMed  CAS  Google Scholar 

  • Elkins, K.L., Cooper, A., Colombini, S.M., Cowley, S.C, and Kieffer, T.L. (2002). In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect. Immun. 70:1936–1948.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J., Oyston, PC, Green, M., and Titball, R.W. (2002). Tularemia. Clin. Microbiol. Rev. 15: 631–646.

    Article  PubMed  Google Scholar 

  • Enderlin, G., Morales, L., Jacobs, R.F., and Cross, J.T. (1994). Streptomycin and alternative agents for the treatment of tularemia: review of the literature. Clin. Infect. Dis. 19:42–47.

    Article  PubMed  CAS  Google Scholar 

  • Ericsson, M., Kroca, M., Johansson, T., Sjostedt, A., and Tarnvik, A. (2001). Long-lasting recall response of CD4 + and CD8 + alphabeta T cells, but not gammadelta T cells, to heat shock proteins of Francisella tularensis. Scand. J. Infect. Dis. 33:145–152.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.E., Gregory, D.W., Schaffner, W., and McGee, Z.A. (1985). Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore) 64:251–269.

    CAS  Google Scholar 

  • Feldman, K.A., Enscore, R.E., Lathrop, S.L., Matyas, B.T., McGuill, M., Schriefer, M.E., Stiles-Enos, D., Dennis, D.T., Petersen, L.R., and Hayes, E.B. (2001). An outbreak of primary pneumonic tularemia on Martha's Vineyard. N. Engl. J. Med. 345:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, K.A., Stiles-Enos, D., Julian, K., Matyas, B.T., Telford, S.R., 3rd, Chu, M.C., Petersen, L.R., and Hayes, E.B. (2003). Tularemia on Martha's Vineyard: seroprevalence and occupational risk. Emerg. Infect. Dis. 9:350–354.

    Article  PubMed  Google Scholar 

  • Fortier, A.H., Leiby, D.A., Narayanan, R.B., Asafoadjei, E., Crawford, R.M., Nacy, C.A., and Meltzer, M.S. (1995). Growth of Francisella tularensis LVS in macrophages: the acidic intracellu-lar compartment provides essential iron required for growth. Infect. Immun. 63:1478–1483.

    PubMed  CAS  Google Scholar 

  • Foshay, L. (1932). Tularemia. Accurate and earlier diagnosis by means of the intradermal reaction. J. Infect. Dis. 51:286–291.

    Article  Google Scholar 

  • Foshay, L. (1940). Tularemia: a summary of certain aspects of the disease including methods for early diagnosis and the results of serum treatment in 600 patients. Medicine (Baltimore) 19:1–83.

    Google Scholar 

  • Franz, D.R., Jahrling, P.B., Friedlander, A.M., McClain, D.J., Hoover, D.L., Bryne, W.R., Pavlin, J.A., Christopher, G.W., and Eitzen, E.M., Jr. (1997). Clinical recognition and management of patients exposed to biological warfare agents. J.A.M.A. 278:399–411.

    Article  PubMed  CAS  Google Scholar 

  • Giddens, W.R., Wilson, J.W., Dienst, F.T., Jr., and Hargrove, M.D. (1957). Tularemia: an analysis of one hundred forty-seven cases. J. Louisiana State Med. Soc. 109:93–98.

    CAS  Google Scholar 

  • Golovliov, I., Sjostedt, A., Mokrievich, A., and Pavlov, V. (2003). A method for allelic replacement in Francisella tularensis. FEMS Microbiol. Lett. 222:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Green, S.J., Nacy, C.A., Schreiber, R.D., Granger, D.L., Crawford, R.M., Meltzer, M.S., and Fortier, A.H. (1993). Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice. Infect. Immun. 61:689–698.

    PubMed  CAS  Google Scholar 

  • Grunow, R., and Finke, E.J. (2002). A procedure for differentiating between the intentional release of biological warfare agents and natural outbreaks of disease: its use in analyzing the tularemia outbreak in Kosovo in 1999 and 2000. Clin. Microbiol. Infect. 8:510–521.

    Article  PubMed  CAS  Google Scholar 

  • Grunow, R., Splettstoesser, W., McDonald, S., Otterbein, C., O'Brien, T., Morgan, C., Aldrich, J., Hofer, E., Finke, E.J., and Meyer, H. (2000). Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin. Diagn. Lab. Immunol. 7:86–90.

    PubMed  CAS  Google Scholar 

  • Gundry, L.P., and Warner, C.G. (1933). Fatal tularemia: review of autopsied cases with report of a fatal case. Ann. Intern. Med. 7:837–852.

    Google Scholar 

  • Harris, C.E. (1926). Tularemia. Colo. Med. 23:328–334.

    Google Scholar 

  • Harris, S. (1992). Japanese biological warfare research on humans: a case study of microbiology and ethics. Ann. N. Y. Acad. Sci. 666:21–52.

    Article  PubMed  CAS  Google Scholar 

  • Hernychova, L., Kovarova, H., Macela, A., Kroca, M., Krocova, Z., and Stulik, J. (1997). Early consequences of macrophage—Francisella tularensis interaction under the influence of different genetic background in mice. Immunol. Lett. 57:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Hopla, C.E. (1974). The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 18:25–53.

    PubMed  CAS  Google Scholar 

  • Hornick, R. (2001). Tularemia revisited. N. Engl. J. Med. 345:1637–1639.

    Article  PubMed  CAS  Google Scholar 

  • Hornick, R.B., and Eigelsbach, H.T. (1966). Aerogenic immunization of man with live tularemia vaccine. Bacteriol. Rev. 30:532–538.

    PubMed  CAS  Google Scholar 

  • Hutwagner, L.C., Thompson, W., Groseclose, S.L., and Willamson, G.D. (2000). An evaluation of alternative methods for detection of aberrations in public health surveillance data. Proceedings of the Biometrics Sections, American Statistical Association, Baltimore, pp. 82–85.

    Google Scholar 

  • Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R., and Koskela, M. (2000). In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 46:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, R.F., Condrey, Y.M., and Yamauchi, T. (1985). Tularemia in adults and children: a changing presentation. Pediatrics 76:818–822.

    PubMed  CAS  Google Scholar 

  • Johansson, A., Berglund, L., Eriksson, U., Goransson, I., Wollin, R., Forsman, M., Tarnvik, A., and Sjostedt, A. (2000a). Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J. Clin. Microbiol. 38:22–26.

    PubMed  CAS  Google Scholar 

  • Johansson, A., Berglund, L., Gothefors, L., Sjostedt, A., and Tarnvik, A. (2000b). Ciprofloxacin for treatment of tularemia in children. Pediatr. Infect. Dis. J. 19:449–453.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, A., Urich, S.K., Chu, M.C., Sjostedt, A., and Tarnvik, A. (2002). In vitro susceptibility to quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis. 34:327–330.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, A.F., Meltzer, M.I., and Schmid, G.P. (1997). The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg. Infect. Dis. 3:83–94.

    Article  PubMed  CAS  Google Scholar 

  • Ketai, L., Alrahji, A.A., Hart, B., Enria, D., and Mettler, F., Jr. (2003). Radiologic manifestations of potential bioterrorist agents of infection. AJR Am. J. Roentgenol. 180:565–575.

    PubMed  Google Scholar 

  • Koskela, P., and Herva, E. (1980). Cell-mediated immunity against Francisella tularensis after natural infection. Scand. J. Infect. Dis. 12:281–287.

    PubMed  CAS  Google Scholar 

  • Koskela, P., and Herva, E. (1982). Cell-mediated and humoral immunity induced by a live Francisella tularensis vaccine. Infect. Immun. 36:983–989.

    PubMed  CAS  Google Scholar 

  • Kovarova, H., Hernychova, L., Hajduch, M., Sirova, M., and Macela, A. (2000). Influence of the bcg locus on natural resistance to primary infection with the facultative intracellular bacterium Francisella tularensis in mice. Infect. Immun. 68:1480–1484.

    Article  PubMed  CAS  Google Scholar 

  • Lai, X.H., Golovliov, I., and Sjostedt, A. (2001). Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69:4691–4694.

    Article  PubMed  CAS  Google Scholar 

  • Larson, C.L. (1970). Tularemia. In: Tice, F., and Sanford, J.P (eds.), Tice's Practice of Medicine, vol. 3. Harper & Row Publishers, Inc., Hagerstown, MD, pp. 663–676.

    Google Scholar 

  • Mason, W.L., Eigelsbach, H.T., Little, S.F., and Bates, J.H. (1980). Treatment of tularemia, including pulmonary tularemia, with gentamicin. Am. Rev. Respir. Dis. 121:39–45.

    PubMed  CAS  Google Scholar 

  • Maurin, M., Mersali, N.F., and Raoult, D. (2000). Bactericidal activities of antibiotics against intracellular Francisella tularensis. Antimicrob. Agents Chemother. 44:3428–3431.

    Article  PubMed  CAS  Google Scholar 

  • McCrumb, F.RJ. (1961). Aerosol infection of man with Pasteurella tularensis. Bacteriol. Rev. 25: 262–267.

    PubMed  CAS  Google Scholar 

  • Miller, R.P, and Bates, J.H. (1969). Pleuropulmonary tularemia. A review of 29 patients. Am. Rev. Respir. Dis. 99:31–41.

    PubMed  CAS  Google Scholar 

  • Narayanan, R.B., Drabick, J.J., Williams, J.C., Fortier, A.H., Meltzer, M.S., Sadoff, J.C., Bolt, C.R., and Nacy, C.A. (1993). Immunotherapy of tularemia: characterization of a monoclonal antibody reactive with Francisella tularensis. J. Leukoc. Biol. 53:112–116.

    PubMed  CAS  Google Scholar 

  • Overholt, E.L., Tigertt, W.D., Kadull, P.J., Ward, M.K., Charkes, N.D., Rene, R.M., Salzman, T.E., and Stephens, M. (1961). An analysis of forty-two cases of laboratory-acquired tularemia. Treatment with broad spectrum antibiotics. Am. J. Med. 30:785–806.

    Article  PubMed  CAS  Google Scholar 

  • Patt, H.A., and Feigin, R.D. (2002). Diagnosis and management of suspected cases of bioterrorism: a pediatric perspective. Pediatrics 109:685–692.

    Article  PubMed  Google Scholar 

  • Penn, R.L. (2005). Francisella tularensis (tularemia). In: Mandell, G., Bennett, J., and Dolan, R. (eds.), Mandell, Douglas, and Bennett's Principles and Practice of Infectious Dieseases, 6th ed. Elsevier Churchill Livingston, Philadelphia, pp. 2674–2685.

    Google Scholar 

  • Penn, R.L., and Kinasewitz, G.T. (1987). Factors associated with a poor outcome in tularemia. Arch. Intern. Med. 147:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Castrillon, J.L., Bachiller-Luque, P., Martin-Luquero, M., Mena-Martin, F.J., and Herreros, V. (2001). Tularemia epidemic in northwestern Spain: clinical description and therapeutic response.Clin. Infect. Dis. 33:573–576.

    Article  PubMed  CAS  Google Scholar 

  • Permar, H.H., and Maclahlan, W.W.G. (1931). Tularemia pneumonia. Ann. Intern. Med. 5:687–698.

    Google Scholar 

  • Poquet, Y., Kroca, M., Halary, F., Stenmark, S., Peyrat, M.A., Bonneville, M., Fournie, J.J., and Sjostedt, A. (1998). Expansion of Vγ9Vδ2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect. Immun. 66:2107–2114.

    PubMed  CAS  Google Scholar 

  • Reintjes, R., Dedushaj, I., Gjini, A., Jorgensen, T.R., Cotter, B., Lieftucht, A., D'Ancona, F., Dennis, D.T., Kosoy, M.A., Mulliqi-Osmani, G., Grunow, R., Kalaveshi, A., Gashi, L., and Humolli, I. (2002). Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg. Infect. Dis. 8:69–73.

    Article  PubMed  Google Scholar 

  • Robinson-Dunn, B. (2002). The microbiology laboratory's role in response to bioterrorism. Arch. Pathol. Lab. Med. 126:291–294.

    PubMed  Google Scholar 

  • Rodgers, B.L., Duffield, R.P., Taylor, T., Jacobs, R.F., and Schutze, G.E. (1998). Tularemic meningitis. Pediatr. Infect. Dis. J. 17:439–441.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, S.A. (1978). Radiographic spectrum of pleuropulmonary tularemia. AJR Am. J. Roentgenol. 131:277–281.

    PubMed  CAS  Google Scholar 

  • Russell, P., Eley, S.M., Fulop, M.J., Bell, D.L., and Titball, R.W. (1998). The efficacy of ciprofloxacin and doxycycline against experimental tularaemia. J. Antimicrob. Chemother. 41:461–465.

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom, G., Lofgren, S., and Tarnvik, A. (1988). A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 56:1194–1202.

    PubMed  CAS  Google Scholar 

  • Sanford, J.P. (1983). Landmark perspective: tularemia. J.A.M.A. 250:3225–3226.

    Article  PubMed  CAS  Google Scholar 

  • Saslaw, S., Eigelsbach, H.T., Prior, J.A., Wilson, H.E., and Carhart, S. (1961a). Tularemia vaccine study. II. Respiratory challenge. Arch. Intern. Med. 107:702–714.

    Article  PubMed  CAS  Google Scholar 

  • Saslaw, S., Eigelsbach, H.T., Wilson, H.E., Prior, J.A., and Carhart, S. (1961b). Tularemia vaccine study. I. Intracutaneous challenge. Arch. Intern. Med. 107:689–701.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, W.D., Dangerfield, H.G., Hogge, A.L., and Crozier, D. (1966). Antibiotic prophylaxis and therapy of airborne tularemia. Bacteriol. Rev. 30:542–550.

    PubMed  CAS  Google Scholar 

  • Scofield, R.H., Lopez, E.J., and McNabb, S.J. (1992). Tularemia pneumonia in Oklahoma, 1982–1987. J. Oklahoma State Med. Assoc. 85:165–170.

    CAS  Google Scholar 

  • Sewell, D.L. (2003). Laboratory safety practices associated with potential agents of biocrime or bioterrorism. J. Clin. Microbiol. 41:2801–2809.

    Article  PubMed  Google Scholar 

  • Shapiro, D.S., and Mark, E.J. (2000). Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 14-2000. A 60-year-old farm worker with bilateral pneumonia. N. Engl. J. Med. 342:1430–1438.

    Article  Google Scholar 

  • Shapiro, D.S., and Schwartz, D.R. (2002). Exposure of laboratory workers to Francisella tularensis despite a bioterrorism procedure. J. Clin. Microbiol. 40:2278–2281.

    Article  PubMed  Google Scholar 

  • Sjostedt, A., Eriksson, U., Berglund, L., and Tarnvik, A. (1997). Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J. Clin. Microbiol. 35:1045–1048.

    PubMed  CAS  Google Scholar 

  • Stuart, B.M., and Pullen, R.L. (1945). Tularemia pneumonia. Review of American literature and report of 15 additional cases. Am. J. Med. Sci. 210:223–236.

    Article  Google Scholar 

  • Stupak, H.D., Scheuller, M.C., Schindler, D.N., and Ellison, D.E. (2003). Tularemia of the head and neck: a possible sign of bioterrorism. Ear Nose Throat J. 82:263–265.

    PubMed  Google Scholar 

  • Syrjala, H., Karvonen, J., and Salminen, A. (1984). Skin manifestations of tularemia: a study of 88 cases in northern Finland during 16 years (1967–1983). Acta Derm. Venereol. 64: 513–516.

    PubMed  CAS  Google Scholar 

  • Syrjala, H., Kujala, P., Myllyla, V., and Salminen, A. (1985). Airborne transmission of tularemia in farmers. Scand. J. Infect. Dis. 17:371–375.

    PubMed  CAS  Google Scholar 

  • Syrjala, H., Schildt, R., and Raisainen, S. (1991). In vitro susceptibility of Francisella tularensis to flu-oroquinolones and treatment of tularemia with norfloxacin and ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 10:68–70.

    Article  PubMed  CAS  Google Scholar 

  • Syrjala, H., Sutinen, S., Jokinen, K., Nieminen, P., Tuuponen, T., and Salminen, A. (1986). Bronchial changes in airborne tularemia. J. Laryngol. Otol. 100:1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Tarnvik, A. (1989). Nature of protective immunity to Francisella tularensis. Rev. Infect. Dis. 11:440–451.

    Article  PubMed  CAS  Google Scholar 

  • Tarnvik, A., and Berglund, L. (2003). Tularaemia. Eur. Respir. J. 21:361–373.

    Article  PubMed  CAS  Google Scholar 

  • Tarnvik, A., and Lofgren, S. (1975). Stimulation of human lymphocytes by a vaccine strain of Francisella tularensis. Infect. Immun. 12:951–957.

    PubMed  CAS  Google Scholar 

  • Telepnev, M., Golovliov, I., Grundstrom, T., Tarnvik, A., and Sjostedt, A. (2003). Francisella tularensis inhibits toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol. 5:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Teutsch, S.M., Martone, W.J., Brink, E.W., Potter, M.E., Eliot, G., Hoxsie, R., Craven, R.B., and Kaufmann, A.F. (1979). Pneumonic tularemia on Martha's Vineyard. N. Engl. J. Med. 301: 826–828.

    Article  PubMed  CAS  Google Scholar 

  • Tigertt, W.D. (1962). Soviet viable Pasteurella tularensis vaccines. A review of selected articles. Bac-teriol. Rev. 26:354–373.

    PubMed  CAS  Google Scholar 

  • Waag, D.M., Sandstrom, G., England, M.J., and Williams, J.C. (1996). Immunogenicity of a new lot of Francisella tularensis live vaccine strain in human volunteers. FEMS Immunol. Med. Microbiol. 13:205–209.

    Article  PubMed  CAS  Google Scholar 

  • White, J.D., Rooney, J.R., Prickett, P.A., Derrenbacher, E.B., Beard, C.W., and Griffith, W.R. (1964). Pathogenesis of experimental respiratory tularemia in monkeys. J. Infect. Dis. 114:277–283.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization. (1970). Health Aspects of Chemical and Biological Weapons: Report of a WHO Group of Consultants, World Health Organization, Geneva.

    Google Scholar 

  • Zaidi, S.A., and Singer, C. (2002). Gastrointestinal and hepatic manifestations of tickborne diseases in the United States. Clin. Infect. Dis. 34:1206–1212.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hodges, L., Penn, R.L. (2009). Tularemia and Bioterrorism. In: Fong, I.W., Alibek, K. (eds) Bioterrorism and Infectious Agents: A New Dilemma for the 21st Century. Emerging Infectious Diseases of the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1266-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1266-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1265-7

  • Online ISBN: 978-1-4419-1266-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics