Skip to main content

Circadian Clocks and Metabolism

  • Chapter
  • First Online:
The Circadian Clock

Part of the book series: Protein Reviews ((PRON,volume 12))

  • 1855 Accesses

Abstract

The processes that underlie circadian timekeeping and the regulation of metabolic homeostasis are tightly and reciprocally linked. It is no surprise that many aspects of modern lifestyle such as sleep curtailment, shift work and artificial lighting simultaneously affect the clock and metabolic control. Deregulation of central and peripheral clocks affects metabolic state via processes such as glucose homeostasis or lipid processing while metabolic dysfunction impacts on circadian rhythmicity at both physiological and molecular levels. This chapter summarises the current knowledge of the processes underlying these phenomena, drawing from epidemiological, clinical, animal and molecular studies. It delineates major open problems and outlines some possible approaches towards an application of chronobiological science for the clinics and society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Obesity Task Force (2003) Obesity in Europe - 2: Waiting for a green light for health? Europe at the crossroads for diet and disease. http://www.iotf.org/

  2. Knutson KL et al (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11(3):163–178

    Article  PubMed  Google Scholar 

  3. Kripke DF et al (1979) Short and long sleep and sleeping pills. Is increased mortality associated? Arch Gen Psychiatry 36(1):103–116

    PubMed  CAS  Google Scholar 

  4. The National Sleep Foundation (Ed.) (2006) Sleep in America Poll. http://www.sleepfoundation.org/catalog/sleep-america-poll-reports/

  5. National Center for Health Statistics (2005) QuickStats: Percentage of Adults Who Reported an Average of [less than or equal to] 6 Hours of Sleep 24-Hour Period, by Sex and Age Group–United States, 1985 and 2004. Morb Mortal Wkly Rep 54(37):917–948

    Google Scholar 

  6. Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18(5):716–738

    Article  PubMed  Google Scholar 

  7. Nofzinger EA et al (2002) Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain 125(Pt 5):1105–1115

    Article  PubMed  Google Scholar 

  8. Spiegel K et al (2004) Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141(11):846–850

    PubMed  Google Scholar 

  9. Spiegel K et al (2000) Adaptation of the 24-h growth hormone profile to a state of sleep debt. Am J Physiol Regul Integr Comp Physiol 279(3):R874–R883

    PubMed  CAS  Google Scholar 

  10. Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188):1435–1439

    Article  PubMed  CAS  Google Scholar 

  11. Vgontzas AN et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84(8):2603–2607

    Article  PubMed  CAS  Google Scholar 

  12. Vgontzas AN et al (1999) Sleep deprivation effects on the activity of the hypothalamic-­pituitary-adrenal and growth axes: potential clinical implications. Clin Endocrinol (Oxf). 51(2):205–215

    Article  CAS  Google Scholar 

  13. Spiegel K et al (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89(11):5762–5771

    Article  PubMed  CAS  Google Scholar 

  14. Dzaja A et al (2004) Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab 286(6):E963–E967

    Article  PubMed  CAS  Google Scholar 

  15. Vioque J, Torres A, Quiles J (2000) Time spent watching television, sleep duration and obesity in adults living in Valencia. Spain. Int J Obes Relat Metab Disord 24(12):1683–1688

    Article  CAS  Google Scholar 

  16. Wittmann M et al (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23(1–2):497–509

    Article  PubMed  Google Scholar 

  17. Scheving LE, Pauly JE (1966) Effect of light on corticosterone levels in plasma of rats. Am J Physiol 210(5):1112–1117

    PubMed  CAS  Google Scholar 

  18. Rajaratnam SM, Arendt J (2001) Health in a 24-h society. Lancet 358(9286):999–1005

    Article  PubMed  CAS  Google Scholar 

  19. Vaticon MD et al (1980) Effects of constant light on prolactin secretion in adult female rats. Horm Res 12(5):277–288

    Article  PubMed  CAS  Google Scholar 

  20. Leproult R et al (2001) Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 86(1):151–157

    Article  PubMed  CAS  Google Scholar 

  21. Fischman AJ et al (1988) Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 47(4):309–316

    Article  PubMed  CAS  Google Scholar 

  22. Snyder SH et al (1965) Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc Natl Acad Sci U S A 53:301–305

    Article  PubMed  CAS  Google Scholar 

  23. Schernhammer ES et al (2006) Urinary 6-sulfatoxymelatonin levels and their correlations with lifestyle factors and steroid hormone levels. J Pineal Res 40(2):116–124

    Article  PubMed  CAS  Google Scholar 

  24. Schulmeister K, Weber M, Bogner W (2004) Application of melatonin action spectra on practical lighting issues. In The Fifth International LRO Lighting Research Symposium, Light and Human Health. The Electric Power Research Institute: Palo Alto, CA. p. 103–114

    Google Scholar 

  25. Prendergast BJ, Nelson RJ, Zucker I (2002) Mammalian seasonal rhythms: behavior and neuroendocrine substrates. In: Pfaff DW (ed) Hormones Brain and Behavior. Elsevier Science, San Diego, CA

    Google Scholar 

  26. Haus E, Smolensky M (2006) Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 17(4):489–500

    Article  PubMed  Google Scholar 

  27. Bullough JD, Rea MS, Figueiro MG (2006) Of mice and women: light as a circadian stimulus in breast cancer research. Cancer Causes Control 17(4):375–383

    Article  PubMed  Google Scholar 

  28. Horne JA, Donlon J, Arendt J (1991) Green light attenuates melatonin output and sleepiness during sleep deprivation. Sleep 14(3):233–240

    PubMed  CAS  Google Scholar 

  29. Damiola F et al (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  PubMed  CAS  Google Scholar 

  30. Froy O (2007) The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 28(2–3):61–71

    CAS  Google Scholar 

  31. Bogdan A, Bouchareb B, Touitou Y (2001) Ramadan fasting alters endocrine and neuroendocrine circadian patterns. Meal-time as a synchronizer in humans? Life Sci 68(14):1607–1615

    Article  PubMed  CAS  Google Scholar 

  32. Al-Hadramy MS, Zawawi TH, Abdelwahab SM (1988) Altered cortisol levels in relation to Ramadan. Eur J Clin Nutr 42(4):359–362

    PubMed  CAS  Google Scholar 

  33. Ben Salem L et al (2002) Circadian rhythm of cortisol and its responsiveness to ACTH during Ramadan. Ann Endocrinol (Paris) 63(6 Pt 1):497–501

    CAS  Google Scholar 

  34. El-Migdadi F et al (2002) Plasma levels of adrenocorticotropic hormone and cortisol in people living in an environment below sea level (Jordan Valley) during fasting in the month of Ramadan. Horm Res 58(6):279–282

    Article  PubMed  CAS  Google Scholar 

  35. Aybak M et al (1996) Effect of Ramadan fasting on platelet aggregation in healthy male subjects. Eur J Appl Physiol Occup Physiol 73(6):552–556

    Article  PubMed  CAS  Google Scholar 

  36. Roky R et al (2001) Sleep during ramadan intermittent fasting. J Sleep Res 10(4):319–327

    Article  PubMed  CAS  Google Scholar 

  37. Goudie AJ, Cooper GD, Halford JC (2005) Antipsychotic-induced weight gain. Diabetes Obes Metab 7(5):478–487

    Article  PubMed  CAS  Google Scholar 

  38. Mann K et al (2006) Nocturnal hormone profiles in patients with schizophrenia treated with olanzapine. Psychoneuroendocrinology 31(2):256–264

    Article  PubMed  CAS  Google Scholar 

  39. Ayalon L, Hermesh H, Dagan Y (2002) Case study of circadian rhythm sleep disorder following haloperidol treatment: reversal by risperidone and melatonin. Chronobiol Int 19(5):947–959

    Article  PubMed  Google Scholar 

  40. Urichuk L et al (2008) Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab 9(5):410–418

    Article  PubMed  CAS  Google Scholar 

  41. Goyal RK (1999) Hyperinsulinemia and insulin resistance in hypertension: differential effects of antihypertensive agents. Clin Exp Hypertens 21(1–2):167–179

    Article  PubMed  CAS  Google Scholar 

  42. Janssen BJ, Tyssen CM, Struyker-Boudier HA (1991) Modification of circadian blood pressure and heart rate variability by five different antihypertensive agents in spontaneously hypertensive rats. J Cardiovasc Pharmacol 17(3):494–503

    Article  PubMed  CAS  Google Scholar 

  43. Hermida RC et al (2007) Chronotherapy of hypertension: administration-time-dependent effects of treatment on the circadian pattern of blood pressure. Adv Drug Deliv Rev 59(9–10):923–939

    Article  PubMed  CAS  Google Scholar 

  44. O’Byrne S, Feely J (1990) Effects of drugs on glucose tolerance in non-insulin-dependent diabetics (Part I). Drugs 40(1):6–18

    Article  PubMed  Google Scholar 

  45. Challis J et al (1981) Loss of diurnal rhythm in plasma estrone, estradiol, and estriol in women treated with synthetic glucocorticoids at 34 to 35 weeks’ gestation. Am J Obstet Gynecol 139(3):338–343

    PubMed  CAS  Google Scholar 

  46. Thomson SP et al (2007) Adrenal steroids and the metabolic syndrome. Curr Hypertens Rep 9(6):512–519

    Article  PubMed  CAS  Google Scholar 

  47. Charles P et al (1999) Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol 163(3):1521–1528

    PubMed  CAS  Google Scholar 

  48. Tam LS et al (2007) Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol 26(9):1495–1498

    Article  PubMed  Google Scholar 

  49. Simpson ER, Waterman MR (1988) Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 50:427–440

    Article  PubMed  CAS  Google Scholar 

  50. Xu J et al (2008) Assessment of the impact of dosing time on the pharmacokinetics/­pharmacodynamics of prednisolone. AAPS J 10(2):331–341

    Article  PubMed  CAS  Google Scholar 

  51. Vitaterna MH et al (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264(5159):719–725

    Article  PubMed  CAS  Google Scholar 

  52. Oster H (2006) The genetic basis of circadian behavior. Genes Brain Behav 5(Suppl 2):73–79

    PubMed  CAS  Google Scholar 

  53. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  PubMed  CAS  Google Scholar 

  54. Takahashi JS et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    Article  PubMed  CAS  Google Scholar 

  55. Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  56. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  PubMed  CAS  Google Scholar 

  57. Balsalobre A et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347

    Article  PubMed  CAS  Google Scholar 

  58. Yoo SH et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  PubMed  CAS  Google Scholar 

  59. Davidson AJ, Yamazaki S, Menaker M, (2003) SCN: ringmaster of the circadian circus or conductor of the circadian orchestra? Novartis Found Symp 253:110–121; discussion 121–125, 281–284

    Google Scholar 

  60. Panda S et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Article  PubMed  CAS  Google Scholar 

  61. Storch KF et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78–83

    Article  PubMed  CAS  Google Scholar 

  62. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  Google Scholar 

  63. Kornmann B et al (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):e34

    Article  PubMed  CAS  Google Scholar 

  64. Oishi K et al (2005) Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res 12(3):191–202

    Article  PubMed  CAS  Google Scholar 

  65. Ishida A et al (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2(5):297–307

    Article  PubMed  CAS  Google Scholar 

  66. Oster H et al (2006) The circadian rhythm of glucocorticoids is regulated by a gating ­mechanism residing in the adrenal cortical clock. Cell Metab 4(2):163–173

    Article  PubMed  CAS  Google Scholar 

  67. Storch KF et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130(4):730–741

    Article  PubMed  CAS  Google Scholar 

  68. Oster H et al (2006) Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 21(5):350–361

    Article  PubMed  CAS  Google Scholar 

  69. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105(39):15172–15177

    Article  PubMed  Google Scholar 

  70. Gatfield D, Schibler U (2008) Circadian glucose homeostasis requires compensatory interference between brain and liver clocks. Proc Natl Acad Sci USA 105(39):14753–14754

    Article  PubMed  Google Scholar 

  71. Iwahana E et al (2008) Gonadectomy reveals sex differences in circadian rhythms and ­suprachiasmatic nucleus androgen receptors in mice. Horm Behav 53(3):422–430

    Article  PubMed  CAS  Google Scholar 

  72. Krout KE et al (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110(1):73–92

    Article  PubMed  CAS  Google Scholar 

  73. Rosenfeld P et al (1993) Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 13(4):295–319

    Article  PubMed  CAS  Google Scholar 

  74. Abe H, Honma S, Honma K (2007) Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am J Physiol Regul Integr Comp Physiol 292(1):R607–R615

    PubMed  CAS  Google Scholar 

  75. Mendoza J et al (2008) Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. J Neuroendocrinol 20(2):251–260

    Article  PubMed  CAS  Google Scholar 

  76. Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49(3):429–454

    Google Scholar 

  77. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    Article  PubMed  CAS  Google Scholar 

  78. Terazono H et al (2003) Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci USA 100(11):6795–6800

    Article  PubMed  CAS  Google Scholar 

  79. Weaver DR, Rivkees SA, Reppert SM (1992) D1-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. Proc Natl Acad Sci USA 89(19):9201–9204

    Article  PubMed  CAS  Google Scholar 

  80. Swanson LW, Cowan WM (1975) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160(1):1–12

    Article  PubMed  CAS  Google Scholar 

  81. Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258(2):204–229

    CAS  Google Scholar 

  82. Lu J et al (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21(13):4864–4874

    PubMed  CAS  Google Scholar 

  83. Chou TC et al (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23(33):10691–10702

    PubMed  CAS  Google Scholar 

  84. Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9(3):398–407

    Article  PubMed  CAS  Google Scholar 

  85. Mieda M et al (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103(32):12150–12155

    Article  PubMed  CAS  Google Scholar 

  86. Landry GJ et al (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290(6):R1527–R1534

    PubMed  CAS  Google Scholar 

  87. Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77(2):323–324

    PubMed  CAS  Google Scholar 

  88. Ahren B (2000) Diurnal variation in circulating leptin is dependent on gender, food intake and circulating insulin in mice. Acta Physiol Scand 169(4):325–331

    Article  PubMed  CAS  Google Scholar 

  89. Kalsbeek A et al (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142(6):2677–2685

    Article  PubMed  CAS  Google Scholar 

  90. Licinio J et al (1997) Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 3(5):575–579

    Article  PubMed  CAS  Google Scholar 

  91. Licinio J et al (1998) Synchronicity of frequently sampled, 24-h concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women. Proc Natl Acad Sci USA 95(5):2541–2546

    Article  PubMed  CAS  Google Scholar 

  92. Schoeller DA et al (1997) Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 100(7):1882–1887

    Article  PubMed  CAS  Google Scholar 

  93. Elmquist JK et al (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395(4):535–547

    Article  PubMed  CAS  Google Scholar 

  94. Flier JS, Maratos-Flier E (1998) Obesity and the hypothalamus: novel peptides for new pathways. Cell 92(4):437–440

    Article  PubMed  CAS  Google Scholar 

  95. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770

    Article  PubMed  CAS  Google Scholar 

  96. Schwartz MW et al (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    PubMed  CAS  Google Scholar 

  97. Sutcliffe JG, de Lecea L (2000) The hypocretins: excitatory neuromodulatory peptides for multiple homeostatic systems, including sleep and feeding. J Neurosci Res 62(2):161–168

    Article  PubMed  CAS  Google Scholar 

  98. Willie JT et al (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458

    Article  PubMed  CAS  Google Scholar 

  99. Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  PubMed  CAS  Google Scholar 

  100. Nishino S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40

    Article  PubMed  CAS  Google Scholar 

  101. Yang X et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126(4):801–810

    Article  PubMed  CAS  Google Scholar 

  102. Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18(3):250–260

    Article  PubMed  Google Scholar 

  103. Liu C et al (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447(7143):477–481

    Article  PubMed  CAS  Google Scholar 

  104. Canaple L et al (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20(8):1715–1727

    Article  PubMed  CAS  Google Scholar 

  105. Inoue I et al (2005) CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb 12(3):169–174

    PubMed  CAS  Google Scholar 

  106. McNamara P et al (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105(7):877–889

    Article  PubMed  CAS  Google Scholar 

  107. Raghuram S et al (2007) Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14(12):1207–1213

    Article  PubMed  CAS  Google Scholar 

  108. Yin L et al (2007) Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318(5857):1786–1789

    Article  PubMed  CAS  Google Scholar 

  109. Zvonic S et al (2007) Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Obesity (Silver Spring) 15(3):539–543

    Article  CAS  Google Scholar 

  110. Hoogerwerf WA et al (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133(4):1250–1260

    Article  PubMed  CAS  Google Scholar 

  111. Mühlbauer E et al (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564(1–2):91–96

    Article  PubMed  CAS  Google Scholar 

  112. Ando H et al (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146(12):5631–5636

    Article  PubMed  CAS  Google Scholar 

  113. von Gall C et al (2002) Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci 5(3):234–238

    Article  CAS  Google Scholar 

  114. Fahrenkrug J et al (2006) Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 147(8):3769–3776

    Article  PubMed  CAS  Google Scholar 

  115. Pessacq MT, Gagliardino JJ (1975) Glycogen metabolism in muscle: its circadian and seasonal variations. Metabolism 24(6):737–743

    Article  PubMed  CAS  Google Scholar 

  116. Shimba S et al (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102(34):12071–12076

    Article  PubMed  CAS  Google Scholar 

  117. Allaman-Pillet N et al (2004) Circadian regulation of islet genes involved in insulin production and secretion. Mol Cell Endocrinol 226(1–2):59–66

    Article  PubMed  CAS  Google Scholar 

  118. Kemppainen RJ, Behrend EN (1997) Adrenal physiology. Vet Clin North Am Small Anim Pract 27(2):173–186

    PubMed  CAS  Google Scholar 

  119. Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16(3):196–204

    PubMed  CAS  Google Scholar 

  120. Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10(10):1154–1163

    Article  PubMed  CAS  Google Scholar 

  121. Bray MS, Young ME (2007) Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev 8(2):169–181

    Article  PubMed  CAS  Google Scholar 

  122. Ramsey KM et al (2007) The clockwork of metabolism. Annu Rev Nutr 27:219–240

    Article  PubMed  CAS  Google Scholar 

  123. Diamant S, Shafrir E (1975) Modulation of the activity of insulin-dependent enzymes of lipogenesis by glucocorticoids. Eur J Biochem 53(2):541–546

    Article  PubMed  CAS  Google Scholar 

  124. Wang CN et al (1995) Effects of dexamethasone on the synthesis, degradation, and secretion of apolipoprotein B in cultured rat hepatocytes. Arterioscler Thromb Vasc Biol 15(9):1481–1491

    PubMed  CAS  Google Scholar 

  125. Samuel VT et al (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279(31):32345–32353

    Article  PubMed  CAS  Google Scholar 

  126. Marchesini G et al (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107(5):450–455

    Article  PubMed  CAS  Google Scholar 

  127. Nguyen-Duy TB et al (2003) Visceral fat and liver fat are independent predictors of metabolic risk factors in men. Am J Physiol Endocrinol Metab 284(6):E1065–E1071

    PubMed  CAS  Google Scholar 

  128. Seppala-Lindroos A et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87(7):3023–3028

    Article  PubMed  CAS  Google Scholar 

  129. Tiikkainen M et al (2002) Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10(9):859–867

    Article  PubMed  CAS  Google Scholar 

  130. Argaud D et al (1996) Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5’-flanking sequence. Diabetes 45(11):1563–1571

    Article  PubMed  CAS  Google Scholar 

  131. Friedman JE et al (1993) Glucocorticoids regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem 268(17):12952–12957

    PubMed  CAS  Google Scholar 

  132. Hauner H, Schmid P, Pfeiffer EF (1987) Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 64(4):832–835

    Article  PubMed  CAS  Google Scholar 

  133. Hauner H et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84(5):1663–1670

    Article  PubMed  CAS  Google Scholar 

  134. Olefsky JM (1975) Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest 56(6):1499–1508

    Article  PubMed  CAS  Google Scholar 

  135. Carter-Su C, Okamoto K (1987) Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. Am J Physiol 252(4 Pt 1):E441–E453

    PubMed  CAS  Google Scholar 

  136. Horner HC, Munck A, Lienhard GE (1987) Dexamethasone causes translocation of glucose transporters from the plasma membrane to an intracellular site in human fibroblasts. J Biol Chem 262(36):17696–17702

    PubMed  CAS  Google Scholar 

  137. Dimitriadis G et al (1997) Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 321(Pt 3):707–712

    PubMed  CAS  Google Scholar 

  138. Hollingdal M et al (2002) Glucocorticoid induced insulin resistance impairs basal but not glucose entrained high-frequency insulin pulsatility in humans. Diabetologia 45(1):49–55

    Article  PubMed  CAS  Google Scholar 

  139. Lambillotte C, Gilon P, Henquin JC (1997) Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest 99(3):414–423

    CAS  Google Scholar 

  140. Harper ME, Seifert EL (2008) Thyroid hormone effects on mitochondrial energetics. Thyroid 18(2):145–156

    Article  PubMed  CAS  Google Scholar 

  141. Ribeiro MO (2008) Effects of thyroid hormone analogs on lipid metabolism and thermogenesis. Thyroid 18(2):197–203

    Article  PubMed  CAS  Google Scholar 

  142. Papi G et al (2007) Subclinical hypothyroidism. Curr Opin Endocrinol Diabetes Obes 14(3):197–208

    PubMed  Google Scholar 

  143. Peschke E et al (2006) Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J Pineal Res 40(2):135–143

    Article  PubMed  CAS  Google Scholar 

  144. Peschke E et al (2007) Melatonin and type 2 diabetes - a possible link? J Pineal Res 42(4):350–358

    Article  PubMed  CAS  Google Scholar 

  145. Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9(1):11–24

    Article  PubMed  Google Scholar 

  146. Radziuk J, Pye S (2006) Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia 49(7):1619–1628

    Article  PubMed  CAS  Google Scholar 

  147. Mühlbauer E, Peschke E (2007) Evidence for the expression of both the MT1- and in addition, the MT2-melatonin receptor, in the rat pancreas, islet and beta-cell. J Pineal Res 42(1):105–106

    Article  PubMed  CAS  Google Scholar 

  148. Peschke E (2008) Melatonin, endocrine pancreas and diabetes. J Pineal Res 44(1):26–40

    PubMed  CAS  Google Scholar 

  149. Sakurai T et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(5):1 page following 696

    Google Scholar 

  150. Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  PubMed  CAS  Google Scholar 

  151. Sakurai T (2006) Roles of orexins and orexin receptors in central regulation of feeding behavior and energy homeostasis. CNS Neurol Disord Drug Targets 5(3):313–325

    CAS  Google Scholar 

  152. Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2(7):521–526

    Article  PubMed  CAS  Google Scholar 

  153. Laposky AD et al (2008) Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett 582(1):142–151

    Article  PubMed  CAS  Google Scholar 

  154. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27, 485 people. Occup Environ Med 58(11):747–752

    Article  PubMed  CAS  Google Scholar 

  155. Allison KC et al (2007) Binge eating disorder and night eating syndrome in adults with type 2 diabetes. Obesity (Silver Spring) 15(5):1287–1293

    Article  Google Scholar 

  156. Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18(1):4–11

    Article  PubMed  CAS  Google Scholar 

  157. Davidson AJ et al (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16(21):R914–R916

    Article  PubMed  CAS  Google Scholar 

  158. Penev PD et al (1998) Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol 275(6 Pt 2):H2334–H2337

    PubMed  CAS  Google Scholar 

  159. Dodd AN et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    Article  PubMed  CAS  Google Scholar 

  160. Ouyang Y et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95(15):8660–8664

    Article  PubMed  CAS  Google Scholar 

  161. Turek FW et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308(5724):1043–1045

    Article  PubMed  CAS  Google Scholar 

  162. Kohsaka A et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6(5):414–421

    Article  PubMed  CAS  Google Scholar 

  163. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7(9):696–701

    Article  PubMed  CAS  Google Scholar 

  164. Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Annu Rev Biochem 71:307–331

    Article  PubMed  CAS  Google Scholar 

  165. Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430(6998):467–471

    Article  PubMed  CAS  Google Scholar 

  166. Brown SA et al (2008) Molecular insights into human daily behavior. Proc Natl Acad Sci USA 105(5):1602–1607

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Judit Kovac for helpful comments on the manuscript. H.O.’s work is supported by an Emmy Noether fellowship of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Oster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oster, H. (2010). Circadian Clocks and Metabolism. In: Albrecht, U. (eds) The Circadian Clock. Protein Reviews, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1262-6_5

Download citation

Publish with us

Policies and ethics