Energy Transfer in Silica Nanoparticles: An Essential Tool for the Amplification of the Fluorescence Signal

  • Sara Bonacchi
  • Damiano Genovese
  • Riccardo Juris
  • Ettore Marzocchi
  • Marco Montalti
  • Luca Prodi
  • Enrico Rampazzo
  • Nelsi Zaccheroni
Part of the Reviews in Fluorescence 2008 book series (RFLU, volume 2008)


The careful design of dye doped silica nanoparticles in order to induce controllable energy transfer processes can yield very sophisticated species able to perform precious and complex functions. They can be therefore exploited in many fields of great economical and social importance, such as medical diagnostics, molecular biology, and solar energy conversion. In this chapter, we present the characterization of some functionalized silica nanoparticles with a particular emphasis on the discussion of the the energy transfer processes at the basis of their properties. Since a careful design is fundamental in the realization of more and more sophisticated materials, we also discuss the synthesis of these systems, in order to suggest new routes for the preparation of such valuable and versatile objects.


Energy Transfer Silica Nanoparticles Photophysical Property Silica Matrix Energy Transfer Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V. Balzani and F. Scandola, Supramolecular Photochemistry (Ellis Horwood Ltd, Avon U.K., 1991).Google Scholar
  2. 2.
    L. Prodi, G. Battistini, L. S. Dolci, M. Montalti and N. Zaccheroni, Luminescence of Gold Nanoparticles. In Frontiers in Surface Nanophotonics: Principles and Applications. Ed. D. L. Endrews and Z. Gaburro (Springer, New York, 2007), pp. 99–120.CrossRefGoogle Scholar
  3. 3.
    A. Burns, H. Ow and U. Wiesner, Fluorescent core-shell silica nanoparticles: Towards ‘Lab on a Particle’ architectures for nanobiotechnology, Chem. Soc. Rev. 35 (11), 1028–1042 (2006).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Burns, P. Sengupta, T. Zedayko, B. Baird and U. Wiesner, Core/shell fluorescent silica nanoparticles for chemical sensing: Towards single-particle laboratories. Small 2, 723–726 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    L. Wang, M. B. O'Donoghue and W. H. Tan, Nanoparticles for multiplex diagnostics and imaging, Nanomedicine 1 (4), 413–426 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    L. Wang, et al., Watching silica nanoparticles glow in the biological world, Anal. Chem. 78, 646–654 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Yao, et al., FloDots: Luminescent nanoparticles, Anal. Bioanal. Chem. 385, 518–524 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    L. Prodi, Luminescent chemosensors: From molecules to nanoparticles, New J. Chem. 29 (1), 20–31 (2005).CrossRefGoogle Scholar
  9. 9.
    E. Rampazzo, S. Bonacchi, M. Montalti, L. Prodi and N. Zaccheroni, Self-organizing core-shell nanostructures: Spontaneous accumulation of dye in the core of doped silica nanoparticles, J. Am. Chem. Soc. 129 (46), 14251–14256 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Arduini, F. Mancin, P. Tecilla and U. Tonellato, Self-organized fluorescent nanosensors for ratiometric Pb2+ detection, Langmuir 23 (16), 8632–8636 (2007).CrossRefPubMedGoogle Scholar
  11. 11.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Third edition (Springer, Singapore, 2006).CrossRefGoogle Scholar
  12. 12.
    A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry. (Blackwell Science ltd, Oxford UK 1991).Google Scholar
  13. 13.
    V. Balzani and M. Maestri, Intermolecular Energy and Electron Transfer Processes. In Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds. Ed. K. Kalyanasundaram and M. Grätzel (Kluwer Academic Publisher, The Netherlands, 1993), pp. 15–49.Google Scholar
  14. 14.
    T. Förster, 10th spiers memorial lecture. Transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27, 7–17 (1959).CrossRefGoogle Scholar
  15. 15.
    D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (5), 836–850 (1953).CrossRefGoogle Scholar
  16. 16.
    L. H. Zhang and S. J. Dong, Electrogenerated chemiluminescence sensors using Ru(bpy)3 2+ doped in silica nanoparticles. Anal. Chem. 78, 5119–5123 (2006).CrossRefPubMedGoogle Scholar
  17. 17.
    Z. Chang, J. M. Zhou, K. Zhao, N. N. Zhu, P. G. He and Y. Z. Fang, Ru(bpy)3 2+-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization. Electrochim. Acta 52, 575–580 (2006).CrossRefGoogle Scholar
  18. 18.
    L. Qian and X. R. Yang, One-step synthesis of Ru(2,2'-bipyridine)(3)Cl-2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection. Adv. Funct. Mater. 17, 1353–1358 (2007).CrossRefGoogle Scholar
  19. 19.
    C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, nanometal surface energy transfer in optical rulers, breaking the FRET barrier, J. Am. Chem. Soc. 127 (9), 3115–3119 (2005).CrossRefPubMedGoogle Scholar
  20. 20.
    T. L. Jennings, M. P. Singh and G. F. Strouse, Fluorescent Lifetime quenching near d = 1.5 nm gold nanoparticles: Probing NSET validity, J. Am. Chem. Soc. 128 (16), 5462–5467 (2006).CrossRefPubMedGoogle Scholar
  21. 21.
    K. Aslan, M. Wu, J. R. Lakowicz and C. D. Geddes, Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms, J. Am. Chem. Soc. 129 (6), 1524–1525 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    K. Aslan, M. Wu, J. R. Lakowicz and C. D. Geddes, Metal enhanced fluorescence solution-based sensing platform 2: Fluorescent core-shell Ag@SiO2 nanoballs, J. Fluoresc. 17 (2), 127–131 (2007).CrossRefPubMedGoogle Scholar
  23. 23.
    J. Zhang, Y. Fu, M. H. Chowdhury and J. R. Lakowicz, Enhanced Förster resonance energy transfer on single metal particle. 2. dependence on donor-acceptor separation distance, particle size, and distance from metal surface, J. Phys. Chem. C 111 (32), 11784–11792 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Montalti, L. Prodi, N. Zaccheroni, A. Zattoni, P. Reschiglian and G. Falini, Energy transfer in fluorescent silica nanoparticles, Langmuir 20 (7), 2989–2991 (2004).CrossRefPubMedGoogle Scholar
  25. 25.
    Q. Zhou and T.M. Swager, Methodology for Enhancing the Sensitivity of Fluorescent Chemosensors. Energy Migration in Conjugated Polymers, J. Am. Chem. Soc. 117 (26), 7017–7018 (1995).CrossRefGoogle Scholar
  26. 26.
    P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla and U. Tonellato, Silica nanoparticles for fluorescence sensing of Zn-II: Exploring the covalent strategy, Chem.-a Eur. J. 13 (8), 2238–2245 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Montalti, L. Prodi and N. Zaccheroni, Fluorescence quenching amplification in silica nanosensors for metal ions, J. Mater. Chem. 15 (27–28), 2810–2814 (2005).CrossRefGoogle Scholar
  28. 28.
    S. Bonacchi, E. Rampazzo, M. Montalti, L. Prodi and N. Zaccheroni, F. Mancin, P. Teolato, Amplified fluorescence response of chemosensors grafted onto silica nanoparticles, Langmuir, 24 (15), 8387–8392 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    B. L. Cushing, V. L. Kolesnichenko and C. J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 104 (9), 3893–3946 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1), 62–69 (1968).CrossRefGoogle Scholar
  31. 31.
    F. J. Arriagada and K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration, J. Colloid Interface Sci. 211 (2), 210–220 (1999).CrossRefPubMedGoogle Scholar
  32. 32.
    M. Zulauf and H. F. Eicke, Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy, J. Phys. Chem. 83 (4), 480–486 (1979).CrossRefGoogle Scholar
  33. 33.
    R. P. Bagwe, C. Yang, L. R. Hilliard and W. Tan, Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method, Langmuir 20 (19), 8336–8342 (2004).CrossRefPubMedGoogle Scholar
  34. 34.
    R. P. Bagwe, L. R. Hilliard and W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding, Langmuir 22 (9), 4357–4362 (2006).CrossRefPubMedGoogle Scholar
  35. 35.
    A. Zattoni, P. Reschiglian, M. Montalti, N. Zaccheroni, L. Prodi, R. A. Picca and C. Malitesta, Characterization of titanium dioxide nanoparticles imprinted for tyrosine by flow field-flow fractionation and spectrofluorimetric analysis, Inorganica Chim. Acta 360 (3), 1063–1071 (2007).CrossRefGoogle Scholar
  36. 36.
    M. Montalti, L. Prodi, N. Zaccheroni and G. Falini, Solvent-induced modulation of collective photophysical processes in fluorescent silica nanoparticles, J. Am. Chem. Soc. 124 (45), 13540–13546 (2002).CrossRefPubMedGoogle Scholar
  37. 37.
    A. Van Blaaderen, A. Imhof, W. Hage and A. Vrij, Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy, Langmuir 8 (6), 1514–1517 (1992).CrossRefGoogle Scholar
  38. 38.
    A. Van Blaaderen and A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres, Langmuir 8 (12), 2921–2931 (1992).CrossRefGoogle Scholar
  39. 39.
    H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb and U. Wiesner, Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett. 5 (1), 113–117 (2005).CrossRefPubMedGoogle Scholar
  40. 40.
    D. R. Larson, H. Ow, H. D. Vishwasrao, A. A. Heikal, U. Wiesner and W. W. Webb, Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores, Chem. Mater. 20 (8), 2677–2684 (2008).CrossRefGoogle Scholar
  41. 41.
    L. Wang, C. Yang and W. Tan, Dual-luminophore-doped silica nanoparticles for multiplexed signaling, Nano Lett. 5 (1), 37–43 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    L. Wang and W. H. Tan, Multicolor FRET silica nanoparticles by single wavelength excitation, Nano Lett. 6 (1), 84–88 (2006).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sara Bonacchi
    • 1
  • Damiano Genovese
    • 1
  • Riccardo Juris
    • 1
  • Ettore Marzocchi
    • 1
  • Marco Montalti
    • 1
  • Luca Prodi
    • 1
  • Enrico Rampazzo
    • 1
  • Nelsi Zaccheroni
    • 1
  1. 1.Dipartimento di Chimica ‘G. Ciamician’, Latemar UnitUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations