Skip to main content

Fluorescence Imaging of Calcium Loading and Mitochondrial Depolarization in Cancer Cells Exposed to Heat Stress

  • Chapter
Reviews in Fluorescence 2008

Part of the book series: Reviews in Fluorescence 2008 ((RFLU,volume 2008))

Abstract

One main issue of thermotherapy is the stress response of mitochondria to heat. Thermotherapies function by inducing lethal heat inside target tissues. Actually spatial and temporal instabilities of temperature distributions inside target volumes require optimized treatment protocols and reliable temperature-control methods during thermotherapies. Since solid tumors present predominant targets to thermotherapy, on the one hand, the hyperthermic stress-induced effects on mitochondrial transmembrane potentials in breast cancer cells (MX1) were analyzed. On the other hand, the intracellular Ca2+ fluctuations in different cell types responding to heat stress were investigated.

Heat sensitivities and stress reactions might be extremely different among different tissue species and tissue dignities; therefore, it is very important to investigate tissue-specific stress responses systematically. Even though this chapter contributes little information, only, to the enlightenment of systemic cellular heat stress mechanisms, it may support the fortification of basic knowledge about systemic stress responses. Using cytoplasmic and intramitochondrial fluorescent Ca2+ probes it was possible to compare hyperthermia-induced changes in the Ca2+ distribution between the cytoplasm and the mitochondria of normal and tumor cells and to examine the relationship between mitochondrial Ca2+ concentration and changes in the viability of these cell types upon hyperthermic treatment. We compared Ca2+ concentrations in cytoplasm and mitochondria in cancerous CX1 and MX1 cells with normal CHO cells after transfer from room temperature (25°C) to 37°C or 43°C. Sudden increase in the incubation temperature (from room temperature to 37°C) induced very different cytoplasmic and mitochondrial Ca2+ fluctuation patterns in normal CHO and CX1 and MX1 tumor cells. Estimating the CX1, MX1, and CHO cell viabilities upon hyperthermic treatment, we found that thermosensitivities increase in the sequence CX1<CHO<MX1. CHO cells were not less sensitive to hyperthermia than were MX1 tumor cells, but results show that the lowest amount of calcium is in the CHO cells, whereas the highest mitochondrial Ca2+ is in the most thermosensitive MX1 cells. The preliminary results are consistent with the conclusion that the sensitivities of cancer cells to hyperthermic treatments depend on the initial mitochondrial Ca2+ concentrations. However, more experiments are needed to confirm these suggestions. Further on, the data presented here might support an optimization of the treatment protocols applied during thermotherapy, particularly LITT and hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Gewiese, J. Beuthan, F. Fobbe, D. Stiller, G. Müller, J. Böse-Landgraf, K.J. Wolf, and M. Deimling, Magnetic resonance imaging-controlled laser-induced interstitial thermotherapy, Invest. Radiol. 29(3), 345–351 (1994).

    CAS  Google Scholar 

  2. A. Roggan, J.P. Ritz, V. Knappe, C.T. Germer, C. Isbert, D. Schädel, and G. Müller, Radiation planning of thermal laser treatment, Med. Laser Appl. 16(2), 65–72 (2001).

    Article  Google Scholar 

  3. M. Nikfarjam, and C. Christophi, Interstitial laser thermotherapy for liver tumors. Brit. J. Surg. 90(9), 1033–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. J. van der Zee, Heating the patient: a promising approach? Ann. Oncol. 13(8), 1173–1184 (2002).

    Article  PubMed  Google Scholar 

  5. A. Debes, R. Willers, U. Göbel, and R. Wessalowski, Role of heat treatment in childhood cancers: distinct resistance profiles of solid tumor cell lines towards combined thermotherapy. Pediatr. Blood Cancer 45(5), 663–669 (2004).

    Article  Google Scholar 

  6. T. Hehr, P. Wust, M. Bamberg, and W. Budach, Current and potential role of thermoradiotherapy for solid tumors, Onkologie 26(3), 295–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. R. Colombo, A. Salonia, L.F. Da Pozzo, R. Naspro, M. Freschi, R. Paroni, M. Pavone-Malasco, and P. Rigatti, Combination of intravesical chemotherapy and hyperthermia for the treatment of superficial bladder cancers: preliminary and clinical experience. Crit. Rev. Oncol. Hematol. 47(2), 127–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. R.B. Campbell, Battling tumors with magnetic nanotherapeutics and hyperthermia: turning up the heat, Nanomedicine 2(5), 649–652 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. M. Johannsen, U. Gneveckow, B. Thiesen, K. Taymoorian, C.H. Cho, N. Waldöfner, R. Scholz, A. Jordan, S. Loening, and P. Wust, Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52(6), 1653–1662 (2007).

    Article  PubMed  Google Scholar 

  10. A. Jordan, R. Scholz, K. Maier-Hauff, F. Landeghem, N. Waldöfner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen, A. Deimling, and R. Felix, The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, J. Neuro-Oncol. 78(1), 7–14 (2006).

    Article  CAS  Google Scholar 

  11. J. Gellermann, W. Wlodarczyk, B. Hildebrandt, H. Ganter, A. Nicolau, B. Rau, W. Tilly, H. Fähling, J. Nadobny, R. Felix, and P. Wust, Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system, Cancer Res. 65(13), 5872–5880 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. M. Mack, R. Straub, K. Eichler, O. Söllner, T. Lehnert, and T. Vogl, Breast cancer metastases in liver: laser-induced interstitial thermotherapy-local tumor control rate and survival data. Radiology 233(2), 400–409 (2004).

    Article  PubMed  Google Scholar 

  13. M.W. Dewhirst, B.L. Viglianti, M. Lora-Michiels, M. Hanson, and P.J. Hoopes, Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia, Int. J. Hyperthermia 19(3), 267–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. H.G. Park, S.L. Han, S.Y. Oh, and H.S. Kang, Cellular responses to mild heat stress. Cell. Mol. Life Sci. 62(1), 10–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. D.L. Vaux, Apoptosis and toxicology―what relevance? Toxicology 181–182, 3–7 (2002).

    Google Scholar 

  16. S.Y. Proskuryakov, A.G. Konoplyannikov, and V.L. Gabai, Necrosis: a specific form of programmed cell death? Exp. Cell Res. 283(1), 1–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. W.F. Yuuen, K.P. Fung, C.Y. Lee, Y.M. Choy, S.K. Kong, S. Ko, and T.T. Kwok, Hyperthermia and tumor necrosis factor-induced apoptosis via mitochondrial damage, Life Sci. 67(6), 725–732 (2000).

    Article  Google Scholar 

  18. W.F. Ko, K.P. Yuen, C.Y. Fung, Y.M. Lee, H.K. Choy, T.T. Cheng, and S.K. Kwok, Reversal of TNF-a resistance by hyperthermia: role of mitochondria, Life Sci. 67(25), 3113–3121 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. S. Lindquist, The heat-shock response, Annu. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. L.A. Sonna, J. Fujita, S.L. Gaffin, and C.M. Lilly, Effects of heat and cold stress on mammalian gene expression, J. Appl. Physiol. 92(4), 1725–1742 (2002).

    CAS  PubMed  Google Scholar 

  21. S. Takayama, J.C. Reed, and S. Homma, Heat-shock proteins as regulators of apoptosis. Oncogene 22(56), 9041–9047 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. K.C. Kregel, Molecular biology of thermoregulation: invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermo tolerance, J. Appl. Physiol. 92(5), 2177–2186 (2002).

    CAS  PubMed  Google Scholar 

  23. K.R.H.W. Funk, F. Nagel, F. Wanka, H.E. Krinke, F. Gölfert, and A. Hofer, Effects of heat shock on the functional morphology of cell organelles observed by video-enhanced microscopy, Anat. Rec. 255(4), 458–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. A. Huckriede, A. Heikema, K. Sjollema, P. Briones, and E. Agsteribbe, Morphology of the mitochondria in heat shock protein 60 deficient fibroblasts from mitochondrial myopathy patients. Effects of stress conditions, Virchows Arch. 427(2), 159–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Y.K. Lai, W.C. Lee, C.H. Hu, and G.L. Hammond, The mitochondria are recognition organelles of cell stress, J. Surg. Res. 62(1), 90–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. F. Macouillard-Poulletier de Gannes, M. Merle, P. Canioni, and P.J. Voison, Metabolic and cellular characterization of immortalized human microglial cells under heat stress, Neurochem. Int. 33(1), 61–73 (1998).

    Article  Google Scholar 

  27. F. Macouillard-Poulletier de Gannes, N. Leducq, P. Diolez, F. Belloc, M. Merle, P. Canioni, and P.J. Voison, Mitochondrial impairment and recovery after heat shock treatment in a human microglial cell line, Neurochem. Int. 36(3), 233–241 (2000).

    Article  Google Scholar 

  28. S. Jakobs, High resolution imaging of live mitochondria, Biochim. Biophys. Acta 1763(5–6), 561–575 (2006).

    CAS  PubMed  Google Scholar 

  29. E. Carafoli, L. Santella, D. Branca, and M. Brini, Generation, control, and processing of cellular calcium signals, Biochem. Mol. Biol. 36(2), 107–260 (2001).

    Article  CAS  Google Scholar 

  30. R. Rafoli, Calcium signaling: a tail for all seasons, Proc. Natl. Acad. Sci. U S A 99, 1115–1122 (2004).

    Google Scholar 

  31. M.J. Erridge, Inositol trisphosphate and calcium signaling, Nature 361, 315–325 (1993).

    Article  Google Scholar 

  32. E.M. Brown, S.M. Quinn, and P.M. Vasseliev, The plasma membrane calcium sensor. In: E. Carafoli and C. Klee (eds.), Calcium as a Cellular Regulator, Oxford University Press, New York, 1999, pp. 295–310.

    Google Scholar 

  33. E. Carafoli, Calcium-mediated cellular signals: a story of failures, Trends Biochem. Sci. 29(7), 371–379 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. L. Santella, and E. Carafoli, Calcium signaling in the cell nucleus, FASEB J. 11(13), 1091–1109 (1997).

    CAS  PubMed  Google Scholar 

  35. N.P. Kinnear, C.N. Wyatt, J.H. Clark, P.J. Calcraft, S. Fleischer, L.H. Jeyakumar, G.F. Nixon, and A.M. Evans, Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle, Cell Calcium 44(2), 190–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. F. Zhang and P.L. Li, Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats, J. Biol. Chem. 282(35), 25259–25269 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. F. Zhang, G. Zhang, A.Y. Zhang, M.J. Koeberl, E. Wallander, and P.L. Li, Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes, Am. J. Physiol. Heart Circ. Physiol. 291(1), H274–H282 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. B. Dale, L.J. De Felice, K. Kyozuka, L. Santella, and E. Tosti, Voltage clamp of the nuclear envelope, Proc. R. Soc. Lond. 255, 119–124 (1994).

    Article  Google Scholar 

  39. L. Lanini, O. Bachs, and E. Carafoli, The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum, J. Biol. Chem. 267, 11548–11552 (1992).

    CAS  PubMed  Google Scholar 

  40. L. Antella and K. Kyozuka, Calcium release into the nucleus by 1,4,5-triphosphate and cyclic ADP-ribose gated channels induces the resumption of meiosis in starfish oocytes. Cell Calcium 22, 1–10 (1997).

    Article  Google Scholar 

  41. J.V. Erasimenko, Y. Maruyama, K. Yano, N.J. Dolman, A.V. Tepikin, O.H. Petersen, and O.V. Gerasimenko, NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors, J. Cell Biol. 163(2), 271–282 (2003).

    Article  Google Scholar 

  42. F. Shibasaki, E.R. Price, and D. Milan, Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4, Nature 382, 370–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. R. Rizzuto, M. Brini, M. Murgia, and T. Pozzan, Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighbouring mitochondria, Science 262, 744–747 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. E. Carafoli, The calcium cycle of mitochondria, FEBS Lett. 104, 1–5 (1979).

    Article  CAS  PubMed  Google Scholar 

  45. R. Baniene, Z. Nauciene, S. Maslauskaite, G. Baliutyte, and V. Mildaziene, Contribution of ATP synthase to stimulation of respiration by Ca2+ in heart mitochondria, Syst. Biol. 153(5), 350–3 (2006).

    CAS  Google Scholar 

  46. P. Bernardi, Mitochondrial transport of cations: channels, exchangers, and permeability transition, Physiol. Rev. 79, 1127–1155 (1999).

    CAS  PubMed  Google Scholar 

  47. B.A. Bornstein, P.S. Zouranjian, J.L. Hansen, S.M. Fraser, L.A. Gelwan, B.B.A. Teichler, and G.K. Svensson, Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma, Int. J. Radiat. Oncol. Biol. Phys. 25, 79–85 (1992).

    Google Scholar 

  48. S. Ringer, A further contribution regarding the influence of different constituents of the blood on the contraction of the heart, J. Physiol. 4, 29–43 (1883).

    CAS  PubMed  Google Scholar 

  49. P.M. Hopkins, Malignant hyperthermia: advances in clinical management and diagnosis. Br. J. Anaesth. 85, 118–28 (2002).

    Article  Google Scholar 

  50. N. Sambuughin, Y. Sei, K.L. Gallagher, H.W. Wyre, D. Madsen, T.E. Nelson, J.E. Fletcher, H. Rosenberg, and S.M. Muldoon, North American malignant hyperthermia population: screening of the ryanodine receptor gene and identification of novel mutations, Anasthesiologie 95, 594–599 (2001).

    Article  CAS  Google Scholar 

  51. F.K. Storm, Background, principles and practice. In: F.K. Storm (ed.), Hyperthermia in Cancer Therapy, GK Hall Medical Publishers, Boston, 1986, pp. 1–8.

    Google Scholar 

  52. N.R. Datta, A.K. Bose, H.K. Kapoor, and S. Gupta, Head and neck cancers: results of thermoradiotherapy versus radiotherapy. Int. J. Hyperthermia 6(3), 479–486 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. W.F. Yuen, K.P. Fung, C.Y. Lee, Y.M. Choy, S.K. Kong, S. Ko, and T.T. Kwok, Hyperthermia and tumor necrosis factor-induced apoptosis via mitochondrial damage, Life Sci. 67(6), 725–732 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. S. Ko, W.F. Yuen, K.P. Fung, C.Y. Lee, Y.M. Choy, H.K. Cheng, T.T. Kwok, and S.K. Kong, Reversal of TNF-resistance by hyperthermia role of mitochondria, Life Sci. 67(25), 3113–3121 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. L. Qian, X. Song, H. Ren, J. Gong, and S. Cheng, Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte, Cell Stress Chaperones 9(3), 281–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. S.H.P. Chan, and R.L. Barbour, Adenine nucleotide transport in hepatoma mitochondria. Characterisation of factors influencing the kinetics of ATP/ADP uptake, Biochim. Biophys. Acta 723, 104–113 (1983).

    Article  CAS  PubMed  Google Scholar 

  57. S.K. Calderwood, M.A. Stevenson, and G.M. Hahn, Effects of heat on cell calcium and inositol lipid metabolism, Radiat. Res. 113(3), 414–425 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Y. Itagaki, K. Akagi, M. Uda, and Y. Tanaka, Role of intracellular calcium concentration on tumor cell death from hyperthermia, Oncol. Rep. 5(1), 139–141 (1998).

    CAS  PubMed  Google Scholar 

  59. K. Kameda, T. Kondo, K. Tanabe, Q.L. Zhao, and H. Seto, The role of intracellular Ca(2+) in apoptosis induced by hyperthermia and its enhancement by verapamil in U937 cells, Int. J. Radiat. Oncol. Biol. Phys. 49(5), 1369–1379 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. C.A. Vidair, and W.C. Dewey, Evaluation of a role for intracellular Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing, Radiat. Res. 105(2), 187–200 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. J.R. Dynlacht, W.C. Hyun, and W.C. Dewey, Changes in intracellular free calcium during hyperthermia: effects of local anesthetics and induction of thermotolerance, cytometry 14(2), 223–229 (1993).

    CAS  Google Scholar 

  62. P.K. Wierenga, G.J. Stege, H.H. Kampinga, and A.W. Konings, Intracellular free calcium concentrations in cell suspensions during hyperthermia, Eur. J. Cell. Biol. 63(1), 68–76 (1994).

    CAS  PubMed  Google Scholar 

  63. E.D. Wieder, and M.H. Fox, The role of intracellular free calcium in the cellular response to hyperthermia, Int. J. Hyperthermia 11(5), 733–742 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. http://www.biosource.com/content/literatureContent/PDFs/alamarbluebooklet.pdf

  65. http://www.invitrogen.com/site/us/en/home/support/Product-Technical-Resources/Product-Spectra.1240ca.html

  66. http://www.invitrogen.com/site/us/en/home/support/Product-Technical-Resources/Product-Spectra.14220ca.html

  67. http://probes.invitrogen.com/servlets/spectra?fileid=3168p82

  68. http://probes.invitrogen.com/media/publications/159.pdf

  69. http://probes.invitrogen.com/servlets/spectra?fileid=3168p82

  70. http://probes.invitrogen.com/servlets/spectra?fileid=7514moh

  71. S.L. Keeling, Total variation based convex filters for medical imaging, Appl. Math. Comput. 139(1), 101–109 (2003).

    Article  Google Scholar 

  72. J.L. Wang, D.S. Ke, and M.T. Lin, Heat shock pretreatment may protect against heatstroke-induced circulatory shock and cerebral ischemia by reducing oxidative stress and energy depletion, Shock 23(2), 161–167 (2005).

    Article  PubMed  Google Scholar 

  73. C. Dressler, O. Minet, V. Novkov, G. Müller, and J. Beuthan, Microscopical heat stress investigations under application of quantum dots, J. Biomed. Opt. 10(4), 1–9 (2005).

    Article  Google Scholar 

  74. J. Beuthan, C. Dressler, and O. Minet, Laser induced fluorescence detection of quantum dots redistributed in thermally stressed tumor cells, Laser Phys. 14(2), 213–219 (2004).

    CAS  Google Scholar 

  75. P. Keshavan, S.J. Schwemberger, D.L.H. Smith, G.F. Babcock, and S.D. Zucker, Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization, Int. J. Cancer 112(3), 433–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem. J. 341(2), 233–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. J.S. Kim, L. He, and J.L. Lemasters, Mitochondrial permeability transition: a common pathway to necrosis and apoptosis, Biochem. Biophys. Res. Commun. 304(3), 463–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. A. Cossarizza, M. Baccarani-Contri, G. Kalashnikova, and C. Francheschi, A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5ʹ,6,6ʹ-tetrachloro-1,1ʹ,3,3ʹ-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197(1), 40–45 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. S.J. Zunino, and D.H. Storms, Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett. 240(1), 123–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. C.J. Lieven, J.P. Vrabec, and L.A. Levin, The effects of oxidative stress on mitochondrial transmembrane potential in retinal ganglion cells. Antioxid. Redox Signal. 5(5), 641–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. M.R. Duchen, A. Leyssens, and M. Crompton, Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single cardiomyocytes. J. Cell Biol. 142(4), 975–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. D.E. Clapham, Calcium Signal. Cell 131, 1047–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. C. Dressler, J. Beuthan, G. Müller, U. Zabarylo, and O. Minet, Fluorescence imaging of heat-stress induced mitochondrial long-term depolarization in breast cancer cells, J. Fluor. 16(5), 689–695 (2006).

    Article  CAS  Google Scholar 

  84. C.M. O´Reilly, K.E. Fogarty, R.M. Drummond, R.A. Tuft, and J.V. Walsh Jr., Quantitative analysis of spontaneous mitochondrial depolarizations, Biophys. J. 85(5), 3350–3357 (2003).

    Article  Google Scholar 

  85. P. Bernardi, L. Scorrano, R. Colonna, V. Petronelli, and F. Di Lisa, Mitochondria and cell death, Eur. J. Biochem. 264(3), 687–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. J.C. Bischof, J. Padanilam, W.H. Holmes, R.M. Ezzell, and R.C. Lee, Dynamics of cell membrane permeability changes at supraphysiological temperatures, Biophys. J. 68(6), 2608–2614 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. M.A. Stevenson, S.K. Calderwood, and G.M. Hahn, Effect of hyperthermia (45°C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance, Cancer Res. 47(14), 3712–7 (1987).

    CAS  PubMed  Google Scholar 

  88. J.D. Schertzer, H.J. Green, and A.R. Tupling, Thermal instability of rat muscle sarcoplasmic reticulum Ca2+-ATPase function. Am. J. Physiol. Endocrinol. Metab. 283(4), 722–728 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Minet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Minet, O., Dressler, C., Beuthan, J., Zabaryło, U., Zukiene, R., Midaziene, V. (2010). Fluorescence Imaging of Calcium Loading and Mitochondrial Depolarization in Cancer Cells Exposed to Heat Stress. In: Geddes, C.D. (eds) Reviews in Fluorescence 2008. Reviews in Fluorescence 2008, vol 2008. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1260-2_4

Download citation

Publish with us

Policies and ethics