Skip to main content

The Origins and Specification of Cortical Interneurons

  • Chapter
  • First Online:
Developmental Plasticity of Inhibitory Circuitry

Abstract

Interneurons, also termed local circuit neurons or (by Cajal) “neurons with short axons” (DeFelipe and Jones (1988) Cajal on the Cerebral Cortex. Oxford University Press, New York), are found throughout the neuraxis. Interneuron function is diverse, ranging from excitation or inhibition to network synchronization, and they accomplish these functions through a wide diversity of neuronal types that differ by neurotransmitter, neurochemical profile, axonal or dendritic arborizations, and targets. With advances in transgenic mouse and other technologies, recent years have produced tremendous advances in understanding interneuron development, function, and relation to human disease. While these advances have come at all levels of central nervous system, this chapter focuses on cerebral cortical interneuron development that is most relevant to human cognition as well as various mental and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alifragis P, Liapi A, Parnavelas JG (2004) Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24:5643–5648

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Mione M, Yun K, Rubenstein JLR (1999) Differential origins of projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654

    Article  CAS  PubMed  Google Scholar 

  • Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363

    CAS  PubMed  Google Scholar 

  • Anderson RM, Lawrence AR, Stottmann RW, Bachiller D, Klingensmith J (2002a) Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129:4975–4987

    CAS  PubMed  Google Scholar 

  • Anderson SA, Kaznowski CE, Horn C, Rubenstein JL, McConnell SK (2002b) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb Cortex 12:702–709

    Article  PubMed  Google Scholar 

  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    CAS  PubMed  Google Scholar 

  • Bellion A, Wassef M, Metin C (2003) Early differences in axonal outgrowth, cell migration and GABAergic differentiation properties between the dorsal and lateral cortex. Cereb Cortex 13:203–214

    Article  PubMed  Google Scholar 

  • Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143:151–158

    Article  CAS  PubMed  Google Scholar 

  • Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604

    Article  CAS  PubMed  Google Scholar 

  • Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Corbin JG, Rutlin M, Gaiano N, Fishell G (2003) Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development 130:4895–4906

    Article  CAS  PubMed  Google Scholar 

  • de Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • DeDiego I, Smith-Fernandez A, Fairen A (1994) Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J NeuroSci 6:983–997

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Jones EJ (eds) (1988) Cajal on the cerebral cortex. Oxford University Press, New York

    Google Scholar 

  • Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–450

    Article  CAS  PubMed  Google Scholar 

  • Fairén A, Cobas A, Fonseca M (1986) Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex. J Comp Neurol 251:67–83

    Article  PubMed  Google Scholar 

  • Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, Lai C, Rubenstein JL, Marin O (2004) Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44:251–261

    Article  CAS  PubMed  Google Scholar 

  • Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27:9682–9695

    Article  CAS  PubMed  Google Scholar 

  • Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27:10935–10946

    Article  CAS  PubMed  Google Scholar 

  • Fuccillo M, Rallu M, McMahon AP, Fishell G (2004) Temporal requirement for hedgehog signaling in ventral telencephalic patterning. Development 131:5031–5040

    Article  CAS  PubMed  Google Scholar 

  • Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347–358

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Williams BP, Bolz J, Price J (1995) The specification of neuronal fate: a common precursor for neurotransmitter subtypes in the rat cerebral cortex in vitro. Eur J NeuroSci 7:889–898

    Article  PubMed  Google Scholar 

  • Grigoriou M, Tucker AS, Sharpe PT, Pachnis V (1998) Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125:2063–2074

    CAS  PubMed  Google Scholar 

  • Gulacsi A, Lillien L (2003) Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro. J Neurosci 23:9862–9872

    CAS  PubMed  Google Scholar 

  • He W, Ingraham C, Rising L, Goderie S, Temple S (2001) Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J Neurosci 21:8854–8862

    CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  • Hevner RF, Daza RA, Englund C, Kohtz J, Fink A (2004) Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124:605–618

    Article  CAS  PubMed  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Jimenez D, Lopez-Mascaraque LM, Valverde F, De Carlos JA (2002) Tangential migration in neocortical development. Dev Biol 244:155–169

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  CAS  PubMed  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93

    CAS  PubMed  Google Scholar 

  • Kohtz JD, Baker DP, Corte G, Fishell G (1998) Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125:5079–5089

    CAS  PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Bjorklund A (1992) Intracerebral grafting of inhibitory neurons. A new strategy for seizure suppression in the central nervous system. Adv Neurol 57:561–569

    CAS  PubMed  Google Scholar 

  • Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007) Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci 27:3078–3089

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133

    Article  PubMed  Google Scholar 

  • Lupo G, Harris WA, Lewis KE (2006) Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci 7:103–114

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26:5069–5082

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nature Reviews Neuroscience 2:780–790

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Anderson SA, Rubenstein JL (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    CAS  PubMed  Google Scholar 

  • Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL (2001) Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions. Science 293:872–875

    Article  CAS  PubMed  Google Scholar 

  • Menezes JR, Smith CM, Nelson KC, Luskin MB (1995) The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol Cell Neurosci 6:496–508

    Article  CAS  PubMed  Google Scholar 

  • Metin C, Baudoin JP, Rakic S, Parnavelas JG (2006) Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J NeuroSci 23:894–900

    Article  PubMed  Google Scholar 

  • Meyer G, Soria JM, Martínez-Galán JR, Martín-Clemente B, Fairén A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518

    Article  CAS  PubMed  Google Scholar 

  • Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064

    CAS  PubMed  Google Scholar 

  • Miller MW (1985) Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Brain Res 355:187–192

    CAS  PubMed  Google Scholar 

  • Miyoshi G, Butt SJ, Takebayashi H, Fishell G (2007) Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci 27:7786–7798

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Markram H (2004) Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97

    Article  CAS  PubMed  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Nery S, Corbin JG, Fishell G (2003) Dlx2 progenitor migration in wild type and nkx2.1 mutant telencephalon. Cereb Cortex 13:895–903

    Article  PubMed  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    CAS  PubMed  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  CAS  PubMed  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    Article  CAS  PubMed  Google Scholar 

  • Peduzzi JD (1988) Genesis of GABA-immunoreactive neurons in the ferret visual cortex. J Neurosci 8:920–931

    CAS  PubMed  Google Scholar 

  • Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147–3160

    CAS  PubMed  Google Scholar 

  • Porteus MH, Bulfone A, Liu JK, Lo LC, Rubenstein JLR (1994) DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J Neuroscience 44:6370–6383

    Google Scholar 

  • Rakic S, Zecevic N (2003) Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41:117–127

    Article  PubMed  Google Scholar 

  • Rogers JH (1992) Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res 587:147–157

    Article  CAS  PubMed  Google Scholar 

  • Rymar VV, Sadikot AF (2007) Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype. J Comp Neurol 501:369–380

    Article  PubMed  Google Scholar 

  • Sharma K, Sheng HZ, Lettieri K, Li H, Karavanov A, Potter S, Westphal H, Pfaff SL (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95:817–828

    Article  CAS  PubMed  Google Scholar 

  • Stenman J, Toresson H, Campbell K (2003a) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J Neurosci 23:167–174

    CAS  PubMed  Google Scholar 

  • Stenman JM, Wang B, Campbell K (2003b) Tlx controls proliferation and patterning of lateral telencephalic progenitor domains. J Neurosci 23:10568–10576

    CAS  PubMed  Google Scholar 

  • Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JL (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9:99–107

    Article  CAS  PubMed  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JL (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    CAS  PubMed  Google Scholar 

  • Taglialatela P, Soria JM, Caironi V, Moiana A, Bertuzzi S (2004) Compromised generation of GABAergic interneurons in the brains of Vax1-/- mice. Development 131:4239–4249

    Article  CAS  PubMed  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    CAS  PubMed  Google Scholar 

  • Valcanis H, Tan SS (2003) Layer Specification of Transplanted Interneurons in Developing Mouse Neocortex. J Neurosci 23:5113–5122

    CAS  PubMed  Google Scholar 

  • Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Tegner J, Constantinidis C, Goldman-Rakic PS (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci U S A 101:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26:676–682

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128:3759–3771

    CAS  PubMed  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7; 687–696

    Article  CAS  PubMed  Google Scholar 

  • Wonders CP, Taylor L, Welagen J, Mbata IC, Xiang JZ, Anderson SA (2008) A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 314:127–136

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, De La Cruz E, Anderson SA (2003) Cortical interneuron fate determination: diverse sources for distinct subtypes? Cereb Cortex 13:670–676

    Article  PubMed  Google Scholar 

  • Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA (2004) Origins of cortical interneuron subtypes. J Neurosci 24:2612–2622

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wonders CP, Anderson SA (2005) Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon. Development 132:4987–4998

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499:144–160

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506:16–29

    Article  CAS  PubMed  Google Scholar 

  • Yozu M, Tabata H, Nakajima K (2005) The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 25:7268–7277

    Article  CAS  PubMed  Google Scholar 

  • Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, Mehler MF (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci U S A 99:16273–16278

    Article  CAS  PubMed  Google Scholar 

  • Zecevic N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607–5619

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li H, Zhou L, Wu JY, Rao Y (1999) Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23:473–485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maroof, A., Anderson, S. (2010). The Origins and Specification of Cortical Interneurons. In: Pallas, S. (eds) Developmental Plasticity of Inhibitory Circuitry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1243-5_2

Download citation

Publish with us

Policies and ethics