Skip to main content

Conformational Transitions of Ionic Channels

  • Chapter
Book cover Single-Channel Recording

Abstract

Ion transport through a channel may be described as a series of thermally activated processes in which the ion moves from a binding site over an energy barrier to an adjacent site. The “binding sites” are the minima in the potential-energy profile that result from interactions of the ion with ligand groups of the channel. In the traditional treatment of ionic channels, the energy levels of wells and barriers are considered to be fixed, i.e., independent of time and not influenced by the movement of the ion. This description, which corresponds to an essentially static picture of protein structure, represents a useful approximation in certain cases. Recent findings on the dynamics of proteins, however, suggest a more general concept of barrier structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, R. M., Beeson, K. W., Eisenstein, L., Frauenfelder, H., and Gunsalus, I. C., 1975, Dynamics of ligand binding to myoglobin Biochemistry 14:5355–5373.

    Google Scholar 

  • Frauenfelder, H., Petsko, G. A., and Tsernoglu, D., 1979, Temperature-dependent X-ray diffraction as a probe of protein structural dynamics, Nature 280: 558–563.

    Article  PubMed  CAS  Google Scholar 

  • Frehland, E., 1979, Theory of transport noise in membrane channels with open—closed kinetics Biophys. Struct. Mechanism, 5:91–106.

    Google Scholar 

  • Frehland, E., 1980, Nonequilibrium ion transport through pores. The influence of barrier structures on current

    Google Scholar 

  • fluctuations, transient phenomena and admittance, Biophys. Struct. Mechanism 7:1–16.

    Google Scholar 

  • Hamill, O. P., and Sakmann, B., 1981, Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells, Nature 294:462–464.

    Google Scholar 

  • Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerv J. Gen. Physiol. 58:599–619.

    Google Scholar 

  • Huber, R., Deisenhofer, J., Colman, R. M., Matshushima, M., and Palm, W., 1976, Crystallographic structure studies of an IgG molecule and an Fc fragment, Nature 264: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Karplus, M., 1982, Dynamics of proteins, Ber. Bunsenges. Phys. Chem. 86: 386–395.

    Article  CAS  Google Scholar 

  • Kolb, H.-A., and Läuger, R, 1978, Spectral analysis of current noise generated by carrier-mediated ion transport J. Membr. Biol. 41:167–187.

    Google Scholar 

  • Lakowicz, J. R., and Weber, G., 1980, Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropy Biophys. J. 32:591–600.

    Google Scholar 

  • Läuger, P., 1978, Transport noise in membranes. Current and voltage fluctuations at equilibrium Biochim. Biophys. Acta 507:337–349.

    Google Scholar 

  • Läuger, R, 1980, Kinetic properties of ion carriers and channels, J. Membr. Biol. 57: 63–178.

    Google Scholar 

  • Läuger, R, Stephan, W., and Frehland, E., 1980, Fluctuations of barrier structure in ionic channels Biochim. Biophys. Acta 602:167–180.

    Google Scholar 

  • Marchais, D., and Marty, A., 1979, Interaction of permanent ions with channels activated by acetylcholine in Aplysia neurones, J. Physiol. 297: 9–45.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Stevens, C. F., 1977, Conductance fluctuations and ionic pores in membranes Annu. Rev. Biophys. Bioeng. 6:345–381.

    Google Scholar 

  • Panic, F., Frolov, E. N., Mössbauer, R. L., and Goldanskii, V. I., 1981, Dynamics of metmyoglobin crystals investigated by nucluear gamma resonance absorption J. Mol. Biol. 145:825–833.

    Google Scholar 

  • Stevens, C. F., 1972, Inferences about membrane properties from electrical noise measurements Biophys. J. 12:1028–1047.

    Google Scholar 

  • Thompson, S. H., and Aldrich, R. W., 1980, Membrane potassium channels, in: The Cell Surface and Neuronal Function: Cell Surfaces Reviews, Vol. 6 ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), pp. 49–85, North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Läuger, P. (1995). Conformational Transitions of Ionic Channels. In: Sakmann, B., Neher, E. (eds) Single-Channel Recording. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1229-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1229-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1230-5

  • Online ISBN: 978-1-4419-1229-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics