Emotional Intelligence and Gender: A Neurophysiological Perspective

Chapter
Part of the The Springer Series on Human Exceptionality book series (SSHE)

Abstract

The focus of the present chapter is on neuropsychological underpinnings of gender differences in mental abilities, in general, and emotional intelligence (EI). As stressed by Nyborg (1994), it is a topic which is a minefield of methodological and theoretical problems. It is also a sensitive area packed with ideology and concern over “political correctness.” For example, test constructors have calibrated their instruments to conform to dogmas of equality between genders. Certain test items were removed, so that the test no longer showed a gender difference in overall intelligence (Vogel, 1990; Wechsler, 1981). Some recent findings, indicating that males outscore females by about 3.8 IQ points (Jackson & Rushton, 2006; Lynn &Irwing, 2004), are therefore puzzling and difficult to explain. Is the difference even greater? Have the test constructors done a bad job? Nyborg (2005, p. 507) concluded that “[p]roper methodology identifies a male advantage in g that increases exponentially at higher levels, relates to brain size, and explains, at least in part, the universal male dominance in society.” The central thesis of this chapter is that gender should be a major variable in studying the relation between individual differences in ability and brain activity.

Keywords

Estrogen Coherence Stein Hyde Progestin 

References

  1. Amelang, M., & Steinmayr, R. (2006). Is there a validity increment for tests of emotional intelligence in explaining the variance of performance criteria? Intelligence, 34, 459–468.CrossRefGoogle Scholar
  2. Anokhin, A. P., Golosheykin, S., Sirevaag, E., Kristjansson, S., Rohrbaugh, J. W., & Heath, A. C. (2006). Rapid discrimination of visual scene content in the human brain. Brain Research, 1093, 167–177.CrossRefPubMedGoogle Scholar
  3. Anokhin, A. P., Lutzenberger, W., & Birbaumer, N. (1999). Spatiotemporal organization of brain dynamics and intelligence: An EEG study in adolescents. International Journal of Psychophysiology, 33, 259–273.CrossRefPubMedGoogle Scholar
  4. Anokhin, A., & Vogel, F. (1996). EEG alpha rhythm frequency and intelligence in normal adults. Intelligence, 23, 1–14.CrossRefGoogle Scholar
  5. Aurlien, H., Gjerde, O. I., Aarseth, J. H., Eldøen, G., Karlsen, B., Skeidsvoll, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115, 665–673.CrossRefPubMedGoogle Scholar
  6. Babchuk, W. A., Hames, R. B., & Thompson, R. A. (1985). Sex differences in the recognition of infant facial expressions of emotion: The primary caretaker hypothesis. Ethology and Sociobiology, 6, 89–101.CrossRefGoogle Scholar
  7. Bar-On, R. (2000). Emotional and social intelligence: Insights from the emotional quotient inventory. In R. Bar-On & J. D. A. Parker (Eds.), The handbook of emotional intelligence (pp. 363–388). San Francisco: Jossey-Bass.Google Scholar
  8. Başar, E., Başar-Eroglu, C., Krakaş, S., & Schürmann, M. (2001). Gamma, alpha delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241–248.CrossRefPubMedGoogle Scholar
  9. Bernat, E., Bunce, S., & Shevrin, H. (2001). Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. International Journal of Psychophysiology, 42, 11–34.CrossRefPubMedGoogle Scholar
  10. Bhattacharya, J., Petsche, H., & Pereda, E. (2001). Long-range synchrony in the γ band: Role in music perception. The Journal of Neuroscience, 21, 6329–6337.PubMedGoogle Scholar
  11. Boden, M. T., & Berenbaum, H. (2007). Emotional awareness, gender, and suspiciousness. Cognition and Emotion, 21, 268–280.CrossRefPubMedGoogle Scholar
  12. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.CrossRefPubMedGoogle Scholar
  13. Cahill, L. (2003). Sex-related influences on the neurobiology of emotional influenced memory. Annals of the New York Academy of Science, 985, 163–173.CrossRefGoogle Scholar
  14. Cantor, N., & Kihlstrom, J. F. (1985). Social intelligence: The cognitive basis of personality. In P. Shaver (Ed.), Review of personality and social psychology (Vol. 6, pp. 15–33). Beverly Hills, CA: Sage.Google Scholar
  15. Cantor, N., & Kihlstrom, J. F. (1987). Personality and social intelligence. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  16. Caprara, G. V., Barbaranelli, C., Borgogni, L., Bucik, V., & Boben, D. (2002). Model “velikih pet” Priročnik za merjenje strukture osebnosti. Ljubljana: Center za psihodiagnostična sredstva.Google Scholar
  17. Ciarrochi, J., Hynes, K., & Crittenden, N. (2005). Can men do better if they try harder: Sex and motivational effects on emotional awareness. Cognition and Emotion, 19, 133–141.CrossRefGoogle Scholar
  18. Coffey, E., Berenbaum, H., & Kerns, J. K. (2003). The dimensions of emotional intelligence, alexithymia, and mood awareness: Associations with personality and performance on an emotional Stroop task. Cognition and Emotion, 17, 671–679.CrossRefGoogle Scholar
  19. Colom, R., & Lynn, R. (2004). Testing the developmental theory of sex differences in intelligence on 12–18 year olds. Personality and Individual Differences, 36, 75–82.CrossRefGoogle Scholar
  20. Corsi-Cabrera, M., Arce, C., Ramos, J., & Guevara, M. A. (1997). Effect of spatial ability and sex on inter- and intrahemispheric correlation of EEG activity. Electroencephalography and Clinical Neurophysiology, 102, 5–11.CrossRefPubMedGoogle Scholar
  21. De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral Cortex, 11, 552–557.CrossRefPubMedGoogle Scholar
  22. De Courten-Myers, G. M. (1999). The human cerebral cortex: Gender differences in structure and function. Journal of Neuropathology and Experimental Neurology, 58, 217–226.CrossRefPubMedGoogle Scholar
  23. De Raad, B. (2005). The trait-coverage of emotional intelligence. Personality and Individual Differences, 38, 673–687.CrossRefGoogle Scholar
  24. Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30, 289–302.CrossRefGoogle Scholar
  25. Extremera, N., Fernandez-Berrocal, P., & Salovey, P. (2006). Spanish version of the Mayer-Salovey-Caruso emotional intelligence test (MSCEIT). Version 2.0: Reliabilities, age and gender differences. Psicothema, 18, 42–48.PubMedGoogle Scholar
  26. Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences. New York: Plenum.CrossRefGoogle Scholar
  27. Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.CrossRefPubMedGoogle Scholar
  28. Freudenthaler, H. H., Fink, A., & Neubauer, A. C. (2006). Emotional abilities and cortical activation during emotional information processing. Personality and Individual Differences, 41, 685–695.CrossRefGoogle Scholar
  29. Garai, J., & Scheinfeld, A. (1968). Sex differences in mental and behavioral traits. Genetic Psychology Monographs, 77, 169–299.Google Scholar
  30. Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 830–839.CrossRefGoogle Scholar
  31. Giannitrapani, D. (1969). EEG average frequency and intelligence. Electroencephalography and Clinical Neurophysiology, 27, 480–486.CrossRefPubMedGoogle Scholar
  32. Gohm, C. L., & Clore, G. L. (2000). Individual differences in emotional experience: Mapping available scales to processes. Personality and Social Psychology Bulletin, 26, 679–697.CrossRefGoogle Scholar
  33. Gohm, C. L., & Clore, G. L. (2002). Four latent traits of emotional experience and their involvement in well-being, coping, and their attributional style. Cognition and Emotion, 16, 495–518.CrossRefGoogle Scholar
  34. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19, 4065–4072.PubMedGoogle Scholar
  35. Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 4, 405–414.CrossRefGoogle Scholar
  36. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. Neuroimage, 25, 320–327.CrossRefPubMedGoogle Scholar
  37. Haier, R. J., Neuchterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.CrossRefGoogle Scholar
  38. Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426.CrossRefGoogle Scholar
  39. Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429–441.CrossRefGoogle Scholar
  40. Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845–857.CrossRefGoogle Scholar
  41. Hall, J. A. (1984). Nonverbal sex differences: Communication accuracy and expressive style. Baltimore: Johns Hopkins University Press.Google Scholar
  42. Halpern, D. F. (2004). A cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13, 135–139.CrossRefGoogle Scholar
  43. Harshman, R. A., Hampson, E., & Berenbaum, S. A. (1983). Individual differences in cognitive abilities and brain organization: Part I. Sex and handedness differences in ability. Canadian Journal of Psychology, 37, 144–192.CrossRefPubMedGoogle Scholar
  44. Henley, N. M. (1977). Body politics: Power, sex and nonverbal communication. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  45. Herlitz, A., Nilsson, L. G., & Backman, L. (1997). Gender differences in episodic memory. Memory and Cognition, 25, 801–811.CrossRefGoogle Scholar
  46. Hyde, J. S. (1981). How large are cognitive gender differences? American Psychologist, 36, 892–901.CrossRefGoogle Scholar
  47. Ito, T. A., Cacioppo, J. T., & Lang, P. J. (1998). Eliciting affect using the International Affective Picture System: trajectories through evaluative space. Personality and Social Psychology Bulletin, 24, 855–879.CrossRefGoogle Scholar
  48. Jackson, N. D., & Rushton, J. P. (2006). Males have greater g: Sex differences in general mental ability from 100,000 17- to 18-year-olds on the scholastic assessment test. Intelligence, 34, 479–486.CrossRefGoogle Scholar
  49. Jaušovec, N. (1996). Differences in EEG alpha activity related to giftedness. Intelligence, 23, 159–173.CrossRefGoogle Scholar
  50. Jaušovec, N. (1997). Differences in EEG alpha activity between gifted and non-identified individuals: Insights into problem solving. Gifted Child Quarterly, 41, 26–32.CrossRefGoogle Scholar
  51. Jaušovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25, 253–267.CrossRefGoogle Scholar
  52. Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237.CrossRefGoogle Scholar
  53. Jaušovec, N., & Jaušovec, K. (2000a). Correlations between ERP parameters and intelligence: A reconsideration. Biological Psychology, 50, 137–154.CrossRefGoogle Scholar
  54. Jaušovec, N., & Jaušovec, K. (2000b). Differences in event-related and induced brain oscillations in the theta and alpha frequency bands related to human intelligence. Neuroscience Letters, 293, 191–194.CrossRefPubMedGoogle Scholar
  55. Jaušovec, N., & Jaušovec, K. (2000c). Differences in resting EEG related to ability. Brain Topography, 12, 229–240.CrossRefPubMedGoogle Scholar
  56. Jaušovec, N., & Jaušovec, K. (2001). Differences in EEG current density related to intelligence. Cognitive Brain Research, 12, 55–60.CrossRefPubMedGoogle Scholar
  57. Jaušovec, N., & Jaušovec, K. (2003). Spatiotemporal brain activity related to intelligence: A low resolution brain electromagnetic tomography study. Cognitive Brain Research, 16, 267–272.CrossRefPubMedGoogle Scholar
  58. Jaušovec, N., & Jaušovec, K. (2004a). Intelligence related differences in induced brain activity during the performance of memory tasks. Personality and Individual Differences, 36, 597–612.CrossRefGoogle Scholar
  59. Jaušovec, N., & Jaušovec, K. (2004b). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and Cognition, 54, 65–74.CrossRefPubMedGoogle Scholar
  60. Jaušovec, N., & Jaušovec, K. (2005a). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56, 223–235.CrossRefPubMedGoogle Scholar
  61. Jaušovec, N., & Jaušovec, K. (2005b). Sex differences in brain activity related to general and emotional intelligence. Brain and Cognition, 59, 277–286.CrossRefPubMedGoogle Scholar
  62. Jaušovec, N., & Jaušovec, K. (2007). Personality, gender and brain oscillations. International Journal of Psychophysiology, 66(2007), 215–224.CrossRefPubMedGoogle Scholar
  63. Jaušovec, N., & Jaušovec, K. (2008). Spatial-rotation and recognizing emotions: Gender related differences in brain activity. Intelligence, 36, 383–393.CrossRefGoogle Scholar
  64. Jaušovec, N., Jaušovec, K., & Gerlič, I. (2001). Differences in event related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neuroscience Letters, 311, 93–96.CrossRefPubMedGoogle Scholar
  65. Jensen, A. (1998). The g factor. Westport, CN: Praeger.Google Scholar
  66. Karakaş, S., & Başar, E. (1998). Early gamma response is sensory in origin: A conclusion based on cross-comparison of results from multiple experimental paradigms. International Journal of Psychophysiology, 31, 13–31.CrossRefPubMedGoogle Scholar
  67. Karakaş, S., Tüfekçi, İ., Bekçi, B., Çakmak, E. D., Doğutepe, E., Erzengin, Ö. U., et al. (2006). Early time-locked gamma response and gender specificity. International Journal of Psychophysiology, 60, 225–239.CrossRefPubMedGoogle Scholar
  68. Keil, A., Müller, M. M., Gruber, T., Weinbruch, C., Stolarova, M., & Elbert, T. (2001). Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clinical Neurophysiology, 112, 2057–2068.CrossRefPubMedGoogle Scholar
  69. Kim, H. S., & Petrakis, E. (1998). Visuoperceptual speed of karate practitioners at three levels of skill. Perceptual and Motor Skills, 87, 96–98.CrossRefPubMedGoogle Scholar
  70. Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.CrossRefPubMedGoogle Scholar
  71. Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.CrossRefPubMedGoogle Scholar
  72. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.CrossRefPubMedGoogle Scholar
  73. Klimesch, W., & Doppelmayr, M. (2001). High frequency alpha and intelligence. Paper presented at the 10th biennial meeting of ISSID, Edinburgh.Google Scholar
  74. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instructional manual. Technical report A-6. Bainesville, FL: University of Florida.Google Scholar
  75. Lehtovirta, M., Partanen, J., Kononen, M., Soininen, H., Helisalmi, S., Mannermaa, A., et al. (1996). Spectral analysis of EEG in Alzheimer’s disease: Relation to apolipoprotein E polymorphism. Neurobiology of Aging, 17, 523–526.CrossRefPubMedGoogle Scholar
  76. Lindholm, T., Lehtinen, V., Hyyppa, M. T., & Puukka, P. (1990). Alexithymic features in relation to the dexamethasone suppression test in a Finnish population sample. American Journal of Psychiatry, 147, 1216–1219.PubMedGoogle Scholar
  77. Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.CrossRefPubMedGoogle Scholar
  78. Lutzenberger, W., Birbaumer, N., Flor, H., Rockstroh, B., & Elbert, T. (1992). Dimensional analysis of the human EEG and intelligence. Neuroscience Letters, 143, 10–14.CrossRefPubMedGoogle Scholar
  79. Lynn, R., & Irwing, P. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32, 481–498.CrossRefGoogle Scholar
  80. Mackintosh, N. J., & Bennett, E. S. (2005). What do Raven’s matrices measure? An analysis in terms of sex differences. Intelligence, 33, 663–664.CrossRefGoogle Scholar
  81. Maitland, S. B., Herlitz, A., Nyberg, L., Backman, L., & Nilsson, L. G. (2004). Selective sex differences in declarative memory. Memory and Cognition, 32, 1160–1169.CrossRefGoogle Scholar
  82. Mansour, C. S., Haier, R. J., & Buchsbaum, M. S. (1996). Gender comparison of cerebral glucose metabolic rate in healthy adults during a cognitive task. Personality and Individual Differences, 20, 183–191.CrossRefGoogle Scholar
  83. Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23, 337–341.CrossRefPubMedGoogle Scholar
  84. Mayer, J. D., Caruso, D. R., & Salovey, P. (2000). Emotional intelligence meets traditional standards for an intelligence. Intelligence, 27, 267–298.CrossRefGoogle Scholar
  85. Mayer, J. D., Salovey, P., & Caruso, D. R. (2002). Mayer-Salovey-Caruso emotional intelligence test (MSCEIT). Toronto: MHS.Google Scholar
  86. McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126, 424–453.CrossRefPubMedGoogle Scholar
  87. McEwen, B. S., Alves, S. E., Bulloch, K., & Weiland, N. G. (1997). Ovarian steroids and the brain: Implication for cognition and aging. Neurology, 48, 8–15.CrossRefGoogle Scholar
  88. McGee, M. (1979). Human spatial abilities: Psychometric studies and environmental, generic, hormonal, and neurological influences. Psychological Bulletin, 86, 889–917.CrossRefPubMedGoogle Scholar
  89. Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35, 811–827.CrossRefGoogle Scholar
  90. Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain – IQ relationship. Intelligence, 30, 515–536.CrossRefGoogle Scholar
  91. Neubauer, V., Freudenthaler, H. H., & Pfurtscheller, G. (1995). Intelligence and spatiotemporal patterns of event-related desynchronization. Intelligence, 3, 249–266.CrossRefGoogle Scholar
  92. Neubauer, A. C., Sange, G., & Pfurtscheller, G. (1999). Psychometric intelligence and event-related desynchronization during performance of a letter matching task. In G. Pfurtscheller & F. H. da Silva Lopes (Eds.), Handbook of electroencephalography and clinical neuropsychology. Event-related desynchronization (Vol. 6, pp. 219–232). Amsterdam: Elsevier.Google Scholar
  93. Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13, 125–164.CrossRefPubMedGoogle Scholar
  94. Nyberg, L., Habib, R., & Herlitz, A. (2000). Brain activation during episodic memory retrieval: Sex differences. Acta Psychologica, 105, 181–194.CrossRefPubMedGoogle Scholar
  95. Nyborg, H. (1994). The neuropsychology of sex-related differences in brain and specific abilities: Hormones, developmental dynamics and new paradigm. In P. A. Vernon (Ed.), The neuropsychology of individual differences (pp. 59–113). London: Academic Press INC.Google Scholar
  96. Nyborg, H. (2005). Sex-related differences in general intelligence g, brain size, and social status. Personality and Individual Differences, 39, 497–509.CrossRefGoogle Scholar
  97. O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 4, 415–443.CrossRefGoogle Scholar
  98. Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (1989). The alexithymia construct: Relationship with sociodemographic variables and intelligence. Comparative Psychiatry, 30, 434–441.CrossRefGoogle Scholar
  99. Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (2003). The 20-item Toronto alexithymia scale III. Reliability and factorial validity in a community population. Journal of Psychosomatic Research, 55, 269–275.CrossRefPubMedGoogle Scholar
  100. Petrides, K. V., & Furnham, A. (2000). Gender differences in measured and self-estimated trait emotional intelligence. Sex Roles, 42, 449–461.CrossRefGoogle Scholar
  101. Pfleiderer, B., Ohrmann, A. P., Suslow, B. T., Wolgast, B. M., Gerlach, B. A. L., Heindela, C. W., et al. (2004). N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: A proton magnetic resonance spectroscopy study. Neuroscience, 123, 1053–1058.CrossRefPubMedGoogle Scholar
  102. Pfurtscheller, G. (1999). Quantification of ERD and ERS in the time domain. In G. Pfurtscheller & F. H. da Silva Lopes (Eds.), Handbook of electroencephalography and clinical neuropsychology, event-related desynchronization (Vol. 6, pp. 89–105). Elsevier: Amsterdam.Google Scholar
  103. Posthuma, D., Neale, M. C., Boomsma, D. I., & de Geus, E. J. C. (2000). Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 3, 567–579.Google Scholar
  104. Pulvermüller, F., Birbaumer, N., Lutzenberger, W., & Mohr, B. (1997). High frequency brain activity: Its possible role in attention, perception and language processing. Progress in Neurobiology, 52, 427–445.CrossRefPubMedGoogle Scholar
  105. Radilovà, J., Figar, S., & Radil, T. (1984). Emotional states influence the visual evoked-potentials. Activitas Nervosa Superior, 26, 159–160.Google Scholar
  106. Razoumnikova, O. (2003). Interaction of personality and intelligence factors in cortex activity modulation. Personality and Individual Differences, 35, 135–162.CrossRefGoogle Scholar
  107. Reed, T. E., Vernon, P. A., & Johnson, A. M. (2004). Sex difference in brain nerve conduction velocity in normal humans. Neuropsychologia, 42, 1709–1714.CrossRefPubMedGoogle Scholar
  108. Rescher, B., & Rappelsberger, P. (1999). Gender dependent EEG-changes during a mental rotation task. International Journal of Psychophysiology, 33, 209–222.CrossRefPubMedGoogle Scholar
  109. Rooy, D. L., Alonso, A., & Viswesvaran, C. (2005). Group differences in emotional intelligence scores: Theoretical and practical implications. Personality and Individual Differences, 38, 689–700.CrossRefGoogle Scholar
  110. Salminen, J. K., Saarijarvi, S., Aarela, E., Toikka, T., & Kauhanen, J. (1999). Prevalence of alexithymia and its association with sociodemographic variables in the general population of Finland. Journal of Psychosomatic Research, 46, 75–82.CrossRefPubMedGoogle Scholar
  111. Schmithorst, V. J., & Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. NeuroImage, 35, 406–419.CrossRefPubMedGoogle Scholar
  112. Schmithorst, V. J., Holland, S. K., & Plante, E. (2006). Cognitive modules utilized for narrative comprehension in children: A functional magnetic resonance imaging study. NeuroImage, 29, 254–266.CrossRefPubMedGoogle Scholar
  113. Schulte, M. J., Ree, M. J., & Carretta, T. R. (2004). Emotional intelligence: Not much more than g and personality. Personality and Individual Differences, 37, 1059–1068.CrossRefGoogle Scholar
  114. Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.CrossRefPubMedGoogle Scholar
  115. Skrandies, W., Reik, P., & Kunze, Ch. (1999). Topography of evoked brain activity during mental arithmetic and language tasks: Sex differences. Neuropsychologia, 37, 421–430.CrossRefPubMedGoogle Scholar
  116. Smith, N. K., Cacioppo, J. T., Larsen, J. T., & Chatrand, T. L. (2003). May I have your attention, please: Electrocortical responses to positive and negative stimuli. Neuropsychologia, 41, 171–183.CrossRefPubMedGoogle Scholar
  117. Strüber, D., Basar-Eroglu, C., Hoff, E., & Stadler, M. (2000). Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. International Journal of Psychophysiology, 38, 243–252.CrossRefPubMedGoogle Scholar
  118. Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory γ activity in humans and its role in object representation. Trends in Neurosciences, 19, 151–162.Google Scholar
  119. Thatcher, R. W., Toro, C., Pflieger, M. E., & Hallet, M. (1994). Human neural network dynamics using multimodal registration of EEG, PET and MRI. In R. W. Thatcher, M. Hallet, & T. Zeffiro (Eds.), Functional neuroimaging: Technical foundations (pp. 259–267). Orlando FL: Academic Press.Google Scholar
  120. Thorndike, E. L. (1920). Intelligence and its use. Harper’s Magazine, 140, 227–235.Google Scholar
  121. Thorndike, R. L., & Stein, S. (1937). An evaluation of the attempts to measure social intelligence. Psychological Bulletin, 34, 275–285.CrossRefGoogle Scholar
  122. Tyler, L. E. (1965). The psychology of human differences (3rd ed.). New York: Appleton-Century-Crofts.Google Scholar
  123. Vogel, S. (1990). Gender differences in intelligence, language, visuo-motor abilities and academic achievement in students with learning disabilities: A review of the literature. Journal of Learning Disability, 23, 44–52.CrossRefGoogle Scholar
  124. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial ability: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.CrossRefPubMedGoogle Scholar
  125. Wechsler, D. (1981). WAIS-R manual: Wechsler adult intelligence scale-revised. New York: Psychological Corporation.Google Scholar
  126. Weiss, E., Siedentopf, C. M., Hofer, A., Deisenhammer, E. A., Hoptman, M. J., Kremser, C., et al. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344, 169–172.CrossRefPubMedGoogle Scholar
  127. Weitz, S. (1974). Nonverbal communication: Readings with commentary. New York: Oxford University Press.Google Scholar
  128. Wesman, A. G. (1949). Separation of sex groups in test reporting. Journal of Educational Psychology, 40, 223–229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of MariborMariborSlovenia

Personalised recommendations