Skip to main content

Physical Activity Before and After Diagnosis of Colorectal Cancer

  • Chapter
  • First Online:
Exercise and Cancer Survivorship

Abstract

Physical inactivity is responsible for 13–14% of colon cancer, an attributable risk greater than family history. Epidemiological evidence shows that PA is protective against colon cancer but is inconclusive as to whether it is protective of rectal cancer or has equal effects on male and female risk of colorectal cancer. The effect of exercise interventions on the risk of colorectal cancer is currently not known; however, the results of a recently published 12-month training programme are encouraging. Although inferences can be made from epidemiological studies, no optimal exercise regimen can be confidently prescribed for protection against colorectal cancer. The limited available evidence demonstrates potential benefits of being physically active before diagnosis of colorectal cancer for disease-specific survival and prognosis. Studies undertaken on survivors of colorectal cancer provide the basis for future research which should be designed to more directly investigate the effect of exercise interventions on clinical outcome measures. Markers/mechanisms by which the impact of PA may be measured include GTT, chronic inflammation, immune function, insulin levels, IGF, genetics and obesity. Research studies have been proposed to help assess whether these markers are beneficially affected by PA, either before or after diagnosis of colorectal cancer. This chapter reviews our current understanding of the significant impact of PA on the risk of, and survival from, colorectal cancer and provides directions for future research which will underpin future health care policies and practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers CD, Loncar D. (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442.

    Article  PubMed  Google Scholar 

  2. Flood DM, Weiss NS, Cook LS, et al. (2000) Colorectal cancer incidence in Asian migrants to the united states and their descendants. Cancer Causes Control 11(5):403–411.

    Article  PubMed  CAS  Google Scholar 

  3. Boyle P, Langman JS. (2000) ABC of colorectal cancer – epidemiology. Br Med J 321(7264):805–808.

    Article  CAS  Google Scholar 

  4. Slattery ML. (2004) Physical activity and colorectal cancer. Sports Med 34(4):239–252.

    Article  PubMed  Google Scholar 

  5. Slattery ML, Levin TR, Ma K, et al. (2003) Family history and colorectal cancer: predictors of risk. Cancer Causes Control 14(9):879–887.

    Article  PubMed  CAS  Google Scholar 

  6. Harriss DJ, Atkinson G, Batterham A, et al. (2009) Lifestyle factors and colorectal cancer risk (2): a systematic review and meta-analysis of associations with leisure-time physical activity. Colorectal Dis 11(7):689–701.

    Google Scholar 

  7. Neugut AI, Jacobson JS, De Vivo I. (1993) Epidemiology of colorectal adenomatous polyps. Cancer Epidemiol Biomarkers Prev 2(2):159–176.

    PubMed  CAS  Google Scholar 

  8. Harriss DJ, Cable NT, George K, et al. (2007) Physical activity before and after diagnosis of colorectal cancer: disease risk, clinical outcomes, response pathways and biomarkers. Sports Med 37(11):947–960.

    Article  PubMed  Google Scholar 

  9. Wallace K, Baron JA, Karagas MR, et al. (2005) The association of physical activity and body mass index with the risk of large bowel polyps. Cancer Epidemiol Biomarkers Prev 14(9):2082–2086.

    Article  PubMed  Google Scholar 

  10. Rosenberg L, Boggs D, Wise LA, et al. (2006) A follow-up study of physical activity and incidence of colorectal polyps in African-American women. Cancer Epidemiol Biomarkers Prev 15(8):1438–1442.

    Article  PubMed  Google Scholar 

  11. Larsen IK, Grotmol T, Almendingen K, et al. (2006) Lifestyle as a predictor for colonic neoplasia in asymptomatic individuals. BMC Gastroenterol 6:5.

    Article  PubMed  Google Scholar 

  12. Abrahamson PE, King IB, Ulrich CM, et al. (2007) No effect of exercise on colon mucosal prostaglandin concentrations: a 12-month randomized controlled trial. Cancer Epidemiol Biomarkers Prev 16(11):2351–2356.

    Article  PubMed  CAS  Google Scholar 

  13. McTiernan A, Yasui Y, Sorensen B, et al. (2006) Effect of a 12-month exercise intervention on patterns of cellular proliferation in colonic crypts: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 15(9):1588–1597.

    Article  PubMed  CAS  Google Scholar 

  14. Basterfield L, Reul J, Mathers JC. (2005) Impact of physical activity on intestinal cancer development in mice. J Nutr 135(12):3002S–3008S.

    PubMed  CAS  Google Scholar 

  15. Banerjee AK, Mandal A, Chanda D, et al. (2003) Oxidant, antioxidant and physical exercise. Mol Cell Biochem 253(1–2):307–312.

    Article  PubMed  CAS  Google Scholar 

  16. Shephard RJ, Shek PN. (1999) Effects of exercise and training on natural killer cell counts and cytolytic activity – a meta-analysis. Sports Med 28(3):177–195.

    Article  PubMed  CAS  Google Scholar 

  17. Dreher D, Junod AF. (1996) Role of oxygen free radicals in cancer development. Eur J Cancer 32A(1):30–38.

    Article  PubMed  CAS  Google Scholar 

  18. Demarzo MMP, Garcia SB. (2004) Exhaustive physical exercise increases the number of colonic preneoplastic lesions in untrained rats treated with a chemical carcinogen. Cancer Lett 216(1):31–34.

    Article  PubMed  CAS  Google Scholar 

  19. Westerlind KC. (2003) Physical activity and cancer prevention-mechanisms. Med Sci Sports Exerc 35(11):1834–1840.

    Article  PubMed  Google Scholar 

  20. Haydon AMM, MacInnis RJ, English DR, et al. (2006) Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 55(1):62–67.

    Article  PubMed  CAS  Google Scholar 

  21. Nickelsen TN, Jorgensen T, Kronborg O. (2005) Lifestyle and 30-day complications to surgery for colorectal cancer. Acta Oncol 44(3):218–223.

    Article  PubMed  Google Scholar 

  22. Meyerhardt JA, Giovannucci EL, Holmes MD, et al. (2006) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 24(22):3527–3534.

    Article  PubMed  Google Scholar 

  23. Irwin ML, Crumley D, McTiernan A, et al. (2003) Physical activity levels before and after a diagnosis of breast carcinoma – the health, eating, activity, and lifestyle (HEAL) study. Cancer 97(7):1746–1757.

    Article  PubMed  Google Scholar 

  24. Courneya KS, Friedenreich CM, Quinney HA, et al. (2003) A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care 12(4):347–357.

    Article  CAS  Google Scholar 

  25. Courneya KS, Friedenreich CM, Quinney HA, et al. (2004) Predictors of adherence and contamination in a randomized trial of exercise in colorectal cancer survivors. Psycho-Oncology 13(12):857–866.

    Article  PubMed  Google Scholar 

  26. Courneya KS, Friedenreich CM, Quinney HA, et al. (2005) A longitudinal study of exercise barriers in colorectal cancer survivors participating in a randomized controlled trial. Ann Behav Med 29(2):147–153.

    Article  PubMed  Google Scholar 

  27. Allgayer H, Owen RW, Nair J, et al. (2008) Short-term moderate exercise programs reduce oxidative DNA damage as determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry in patients with colorectal carcinoma following primary treatment. Scandinavian J Gastroenterol 43(8):971–978.

    Article  CAS  Google Scholar 

  28. Meyerhardt JA, Heseltine D, Niedzwiecki D, et al. (2006) Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol 24(22):3535–3541.

    Article  PubMed  Google Scholar 

  29. Courneya KS, Booth CM, Gill S, et al. (2008) The colon health and life-long exercise change trial: a randomized trial of the national cancer institute of Canada clinical trials group. Curr Oncol 15(6):262–270.

    Article  Google Scholar 

  30. Spence RR, Heesch KC, Eakin EG et al.(2007) Randomised controlled trial of a supervised exercise rehabilitation program for colorectal cancer survivors immediately after chemotherapy: study protocol. BMC Cancer 7:154.

    Article  PubMed  Google Scholar 

  31. de Lima C, Alves L, Iagher F, et al. (2008) Anaerobic exercise reduces tumor growth, cancer cachexia and increases macrophage and lymphocyte response in walker 256 tumor-bearing rats. Eur J Appl Physiol 104(6):957–964.

    Article  PubMed  Google Scholar 

  32. Bacurau AVN, Belmonte MA, Navarro F, et al. (2007) Effect of a high-intensity exercise training on the metabolism and function of macrophages and lymphocytes of walker 256 tumor-bearing rats. Exp Biol Med 232:1289–1299.

    Article  CAS  Google Scholar 

  33. Courneya KS, Friedenreich CM. (2001) Framework PEACE: an organizational model for examining physical exercise across the cancer experience. Ann Behav Med 23(4):263–272.

    Article  PubMed  CAS  Google Scholar 

  34. Courneya KS, Friedenreich CM. (1997) Relationship between exercise during treatment and current quality of life among survivors of breast cancer. J Psychosoc Oncol 15(3–4):35–57.

    Google Scholar 

  35. Schmitz KH, Holtzman J, Courneya KS, et al. (2005) Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 14(7):1588–1595.

    Article  PubMed  Google Scholar 

  36. Blair SN, Brodney S. (1999) Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc 31(11):S646–S662.

    PubMed  CAS  Google Scholar 

  37. Coebergh JWW, Janssen-Heijnen MLG, Post PN, et al. (1999) Serious co-morbidity among unselected cancer patients newly diagnosed in the southeastern part of the Netherlands in 1993–1996. J Clin Epidemiol 52(12):1131–1136.

    Article  PubMed  CAS  Google Scholar 

  38. Baade PD, Fritschi L, Eakin EG. (2006) Non-cancer mortality among people diagnosed with cancer (Australia). Cancer Causes Control 17(3):287–297.

    Article  PubMed  Google Scholar 

  39. Thune I, Lund E. (1996) Physical activity and risk of colorectal cancer in men and women. Br J Cancer 73(9):1134–1140.

    PubMed  CAS  Google Scholar 

  40. Peters HPF, De Vries WR, Vanberge-Henegouwen GP, et al. (2001) Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut 48(3):435–439.

    Article  PubMed  CAS  Google Scholar 

  41. Holdstoc DJ, Misiewic JJ. (1970) Factors controlling colonic motility – colonic pressures and transit after meals in patients with total gastrectomy, pernicious anaemia or duodenal ulcer. Gut 11(2):100–110.

    Article  Google Scholar 

  42. De Schryver AM, Keulemans YC, Peters HP, et al. (2005) Effects of regular physical activity on defecation pattern in middle-aged patients complaining of chronic consTipation. Scandinavian J Gastroenterol 40(4):422–429.

    Article  Google Scholar 

  43. Cordain L, Latin RW, Behnke JJ. (1986) The effects of an aerobic running program on bowel transit-time. J Sports Med Phys Fitness 26(1):101–104.

    PubMed  CAS  Google Scholar 

  44. Oettle GJ. (1991) Effect of moderate exercise on bowel habit. Gut 32(8):941–944.

    Article  PubMed  CAS  Google Scholar 

  45. Koffler KH, Menkes A, Redmond RA, et al. (1992) Strength training accelerates gastrointestinal transit in middle-aged and older men. Med Sci Sports Exerc 24(4):415–419.

    PubMed  CAS  Google Scholar 

  46. Liu F, Kondo T, Toda Y. (1993) Brief physical inactivity prolongs colonic transit-time in elderly active men. Int J Sports Med 14(8):465–467.

    Article  PubMed  CAS  Google Scholar 

  47. Bingham SA, Cummings JH. (1989) Effect of exercise and physical-fitness on large intestinal function. Gastroenterology 97(6):1389–1399.

    PubMed  CAS  Google Scholar 

  48. Coenen C, Wegener M, Wedmann B, et al. (1992) Does physical exercise influence bowel transit-time in healthy-young men. Am J Gastroenterol 87(3):292–295.

    PubMed  CAS  Google Scholar 

  49. Robertson G, Meshkinpour H, Vandenberg K, et al. (1993) Effects of exercise on total and segmental colon transit. J Clin Gastroenterol 16(4):300–303.

    Article  PubMed  CAS  Google Scholar 

  50. Schatzkin A, Lanza E, Corle D, et al. (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. N Engl J Med 342(16):1149–1155.

    Article  PubMed  CAS  Google Scholar 

  51. Asano T, McLeod RS. (2002) Dietary fibre for the prevention of colorectal adenomas and carcinomas. Cochrane Database of Syst Rev 2:CD003430.

    Google Scholar 

  52. Kuper H, Adami HO, Trichopoulos D. (2000) Infections as a major preventable cause of human cancer. J Intern Med 248(3):171–183.

    Article  PubMed  CAS  Google Scholar 

  53. Coussens LM, Werb Z. (2002) Inflammation and cancer. Nature 420(6917):860–867.

    Article  PubMed  CAS  Google Scholar 

  54. Demarzo MMP, Martins LV, Fernandes CR, et al. (2008) Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis. Med Sci Sports Exerc 40(4):618–621.

    Article  PubMed  Google Scholar 

  55. Baniyash M. (2006) Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol 16(1):80–88.

    Article  PubMed  CAS  Google Scholar 

  56. Boland CR, Luciani MG, Gasche C, et al. (2005) Infection, inflammation, and gastrointestinal cancer. Gut 54(9):1321–1331.

    Article  PubMed  CAS  Google Scholar 

  57. Johne B, Fagerhol MK, Lyberg T, et al. (1997) Functional and clinical aspects of the myelomonocyte protein calprotectin. J Clin Pathol Mol Pathol 50(3):113–123.

    Article  CAS  Google Scholar 

  58. Kronborg O, Ugstad M, Fuglerud P, et al. (2000) Faecal calprotectin levels in a high risk population for colorectal neoplasia. Gut 46(6):795–800.

    Article  PubMed  CAS  Google Scholar 

  59. Poullis A, Foster R, Shetty A, et al. (2004) Bowel inflammation as measured by fecal calprotectin: a link between lifestyle factors and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 13(2):279–284.

    Article  PubMed  CAS  Google Scholar 

  60. Hauret KG, Bostick RM, Matthews CE, et al. (2004) Physical activity and reduced risk of incident sporadic colorectal adenomas: observational support for mechanisms involving energy balance and inflammation modulation. Am J Epidemiol 159(10):983–992.

    Article  PubMed  Google Scholar 

  61. Eisinger AL, Prescott SM, Jones DA, et al. (2007) The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 82(1–4):147–154.

    Article  PubMed  CAS  Google Scholar 

  62. Martinez ME, Heddens D, Earnest DL, et al. (1999) Physical activity, body mass index, and prostaglandin E-2 levels in rectal mucosa. J Natl Cancer Inst 91(11):950–953.

    Article  PubMed  CAS  Google Scholar 

  63. Corpet DE, Pierre F. (2003) Point: from animal models to prevention of colon cancer. Systematic review of chemoprevention in Min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev 12(5):391–400.

    PubMed  Google Scholar 

  64. Pischon T, Hankinson SE, Hotamisligil GS, et al. (2003) Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obesity Res 11(9):1055–1064.

    Article  CAS  Google Scholar 

  65. Jankord R, Jemiolo B. (2004) Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc 36(6):960–964.

    Article  PubMed  CAS  Google Scholar 

  66. Stewart LK, Flynn MG, Campbell WW, et al. (2005) Influence of exercise training and age on CD14+cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun 19(5):389–397.

    Article  PubMed  CAS  Google Scholar 

  67. Smith JK, Dykes R, Douglas JE, et al. (1999) Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 281(18):1722–1727.

    Article  PubMed  CAS  Google Scholar 

  68. You TJ, Berman DM, Ryan AS, et al. (2004) Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab 89(4):1739–1746.

    Article  PubMed  CAS  Google Scholar 

  69. Triantafilou M, Triantafilou K. (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23(6):301–304.

    Article  PubMed  CAS  Google Scholar 

  70. Flynn MG, McFarlin BK, Phillips MD, et al. (2003) Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol 95(5):1833–1842.

    PubMed  CAS  Google Scholar 

  71. McFarlin BK, Flynn MG, Campbell WW, et al. (2004) TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med Sci Sports Exerc 36(11):1876–1883.

    Article  PubMed  CAS  Google Scholar 

  72. Armstrong F, Mathers JC. (2000) Kill and cure: dietary augmentation of immune defences against colon cancer. Proc Nutr Soc 59(2):215–220.

    PubMed  CAS  Google Scholar 

  73. Shevde LA, Joshi NN, Dudhat SB, et al. (1999) Immune functions, clinical parameters and hormone receptor status in breast cancer patients. J Cancer Res Clin Oncol 125(5):313–320.

    Article  PubMed  CAS  Google Scholar 

  74. Liljefors M, Nilsson B, Skog ALH, et al. (2003) Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17-1a. Int J Cancer 105(5):717–723.

    Article  PubMed  CAS  Google Scholar 

  75. Newsholme E, Parry-Billings M (1994) Effects of exercise on the immune system. In: Bouchard C, Shephard R, Stephens T (eds) Physical Activity, Fitness, and Health: International Proceedings Consensus Statement. Human Kinetics, Champaign (IL), p. 451.

    Google Scholar 

  76. Dishman RK, Hong S, Soares J, et al. (2000) Activity-wheel running blunts suppression of splenic natural killer cell cytotoxicity after sympathectomy and footshock. Physiol Behav 71(3–4):297–304.

    Article  PubMed  CAS  Google Scholar 

  77. Dishman RK, Warren JM, Hong S, et al. (2000) Treadmill exercise training blunts suppression of splenic natural killer cell cytolysis after footshock. J Appl Physiol 88(6):2176–2182.

    PubMed  CAS  Google Scholar 

  78. Fairey AS, Courneya KS, Field CJ, et al. (2002) Physical exercise and immune system function in cancer survivors – a comprehensive review and future directions. Cancer 94(2):539–551.

    Article  PubMed  Google Scholar 

  79. Nieman DC, Cook VD, Henson DA, et al. (1995) Moderate exercise training and natural-killer-cell cytotoxic activity in breast-cancer patients. Int J Sports Med 16(5):334–337.

    Article  PubMed  CAS  Google Scholar 

  80. Hayes SC, Rowbottom D, Davies PSW, et al. (2003) Immunological changes after cancer treatment and participation in an exercise program. Med Sci Sports Exerc 35(1):2–9.

    Article  PubMed  Google Scholar 

  81. Allgayer H, Nicolaus S, Schreiber S. (2004) Decreased interleukin-1 receptor antagonist response following moderate exercise in patients with colorectal carcinoma after primary treatment. Cancer Detect Prev 28(3):208–213.

    Article  PubMed  CAS  Google Scholar 

  82. Nieman DC. (1998) Exercise and resistance to infection. Can J Physiol Pharmacol 76(5):573–580.

    Article  PubMed  CAS  Google Scholar 

  83. Fehrenbach E, Northoff H. (2001) Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 7:66–89.

    PubMed  CAS  Google Scholar 

  84. Hu FB, Manson JE, Liu SM, et al. (1999) Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J Natl Cancer Inst 91(6):542–547.

    Article  PubMed  CAS  Google Scholar 

  85. La Vecchia C, Negri E, Decarli A, et al. (1997) Diabetes mellitus and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 6(12):1007–1010.

    PubMed  Google Scholar 

  86. Keku TO, Lund PK, Galanko J, et al. (2005) Insulin resistance, apoptosis, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 14(9):2076–2081.

    Article  PubMed  CAS  Google Scholar 

  87. Schoen RE, Weissfeld JL, Kuller LH, et al. (2005) Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps. Gastroenterology 129(2):464–475.

    PubMed  Google Scholar 

  88. Kaaks R, Toniolo P, Akhmedkhanov A, et al. (2000) Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 92(19):1592–1600.

    Article  PubMed  CAS  Google Scholar 

  89. Ma J, Giovannucci E, Pollak M, et al. (2004) A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst 96(7):546–553.

    Article  PubMed  CAS  Google Scholar 

  90. Yam D, Fink A, Mashiah A, et al. (1996) Hyperinsulinemia in colon, stomach and breast cancer patients. Cancer Lett 104(2):129–132.

    Article  PubMed  CAS  Google Scholar 

  91. LaMonte MJ, Blair SN, Church TS. (2005) Physical activity and diabetes prevention. J Appl Physiol 99(3):1205–1213.

    Article  PubMed  Google Scholar 

  92. Platz EA, Hankinson SE, Rifai N, et al. (1999) Glycosylated hemoglobin and risk of colorectal cancer and adenoma (United States). Cancer Causes Control 10(5):379–386.

    Article  PubMed  CAS  Google Scholar 

  93. Irwin ML, McTiernan A, Bernstein L, et al. (2005) Relationship of obesity and physical activity with C-peptide, leptin, and insulin-like growth factors in breast cancer survivors. Cancer Epidemiol Biomarkers Prev 14(12):2881–2888.

    Article  PubMed  CAS  Google Scholar 

  94. Schmitz KH, Ahmed RL, Hannan PJ, et al. (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680.

    Article  PubMed  CAS  Google Scholar 

  95. Fairey AS, Courneya KS, Field CJ, et al. (2003) Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 12(8):721–727.

    PubMed  CAS  Google Scholar 

  96. Davies M, Gupta S, Goldspink G, et al. (2006) The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis 21(3):201–208.

    Article  PubMed  CAS  Google Scholar 

  97. Ma J, Pollak MN, Giovannucci E, et al. (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91(7):620–625.

    Article  PubMed  CAS  Google Scholar 

  98. Renehan AG, Painter JE, Atkin WS, et al. (2001) High-risk colorectal adenomas and serum insulin-like growth factors. Br J Surg 88(1):107–113.

    Article  PubMed  CAS  Google Scholar 

  99. Renehan AG, Zwahlen M, Minder C, et al. (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363(9418):1346–1353.

    Article  PubMed  CAS  Google Scholar 

  100. Goodman GD, Barrett CE. (1997) Epidemiology of insulin-like growth factor-I in elderly men and women - the Rancho Bernardo study. Am J Epidemiol 145(11):970–976.

    Google Scholar 

  101. Rudman D, Mattson DE. (1994) Serum insulin-like growth factor-I in healthy older men in relation to physical activity. J Am Geriatrics Soc 42(1):71–76.

    CAS  Google Scholar 

  102. Chang S, Wu XF, Yu H, et al. (2002) Plasma concentrations of insulin-like growth factors among healthy adult men and postmenopausal women: associations with body composition, lifestyle, and reproductive factors. Cancer Epidemiol Biomarkers Prev 11(8):758–766.

    PubMed  CAS  Google Scholar 

  103. Morimoto LM, Newcomb PA, White E, et al. (2005) Variation in plasma insulin-like growth factor-1 and insulin-like growth factor binding protein-3: personal and lifestyle factors (United States). Cancer Causes Control 16(8):917–927.

    Article  PubMed  Google Scholar 

  104. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, et al. (1994) Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol 41(3):351–357.

    Article  CAS  Google Scholar 

  105. Haydon AMM, Maclnnis RJ, English DR, et al. (2006) Physical activity, insulin-like growth factor 1, insulin-like growth factor binding protein 3, and survival from colorectal cancer. Gut 55(5):689–694.

    Article  PubMed  CAS  Google Scholar 

  106. Manetta J, Brun JF, Fedou C, et al. (2003) Serum levels of insulin-like growth factor-I (IGF-I), and IGF-binding proteins-1 and-3 in middle-aged and young athletes versus sedentary men: relationship with glucose disposal. Metab Clin Exp 52(7):821–826.

    PubMed  CAS  Google Scholar 

  107. Rosendal L, Langberg H, Flyvbjerg A, et al. (2002) Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. J Appl Physiol 93(5):1669–1675.

    PubMed  CAS  Google Scholar 

  108. Poehlman ET, Rosen CJ, Copeland KC. (1994) The influence of endurance training on insulin-like growth-factor-I in older individuals. Metab Clin Exp 43(11):1401–1405.

    PubMed  CAS  Google Scholar 

  109. Filaire E, Jouanel P, Colombier M, et al. (2003) Effects of 16 weeks of training prior to a major competition on hormonal and biochemical parameters in young elite gymnasts. J Pediatr Endocrinol Metab 16(5):741–750.

    PubMed  CAS  Google Scholar 

  110. Gomez-Merino D, Chennaoui M, Drogou C, et al. (2004) Influence of energy deficiency on the insulin-like growth factor I axis in a military training program. Horm Metab Res 36(7):506–511.

    Article  PubMed  CAS  Google Scholar 

  111. Nemet D, Connolly PH, Pontello-Pescatello AM, et al. (2004) Negative energy balance plays a major role in the IGF-I response to exercise training. J Appl Physiol 96(1):276–282.

    Article  PubMed  CAS  Google Scholar 

  112. Cho KR, Vogelstein B. (1992) Suppressor gene alterations in the colorectal adenoma-carcinoma sequence. J Cell Biochem 16G:137–141.

    Article  CAS  Google Scholar 

  113. Bos JL, Fearon ER, Hamilton SR, et al. (1987) Prevalence of ras gene-mutations in human colorectal cancers. Nature 327(6120):293–297.

    Article  PubMed  CAS  Google Scholar 

  114. Rashid A, Zahurak M, Goodman SN, et al. (1999) Genetic epidemiology of mutated K-ras proto-oncogene, altered suppressor genes, and microsatellite instability in colorectal adenomas. Gut 44(6):826–833.

    Article  PubMed  CAS  Google Scholar 

  115. Tortola S, Marcuello E, Gonzalez I, et al. (1999) P53 and K-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer. J Clin Oncol 17(5):1375–1381.

    PubMed  CAS  Google Scholar 

  116. Leung PS, Aronson WJ, Ngo TH, et al. (2004) Exercise alters the IGF axis in vivo and increases p53 protein in prostate tumor cells in vitro. J Appl Physiol 96(2):450–454.

    Article  PubMed  CAS  Google Scholar 

  117. Slattery ML, Anderson K, Curtin K, et al. (2001) Lifestyle factors and ki-ras mutations in colon cancer tumors. Mut Res Fund Mol Mech Mutagen 483(1–2):73–81.

    Article  CAS  Google Scholar 

  118. Heavey PM, McKenna D, Rowland IR. (2004) Colorectal cancer and the relationship between genes and the environment. Nutr Cancer International Journal 48(2):124–141.

    Article  CAS  Google Scholar 

  119. Buehmeyer K, Doering F, Daniel H, et al. (2008) Alteration of gene expression in rat colon mucosa after exercise. Ann Anat-Anat Anz 190(1):71–80.

    Article  CAS  Google Scholar 

  120. Harriss DJ, Atkinson G, George K, et al. (2009) Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Colorectal Dis 11(6):547–563.

    Google Scholar 

  121. MacInnis RJ, English DR, Hopper JL, et al. (2004) Body size and composition and colon cancer risk in men. Cancer Epidemiol Biomarkers Prev 13(4):553–559.

    PubMed  Google Scholar 

  122. MacInnis RJ, English DR, Hopper JL, et al. (2006) Body size and composition and colon cancer risk in women. Int J Cancer 118(6):1496–1500.

    Article  PubMed  CAS  Google Scholar 

  123. Slattery ML, Ballard-Barbash R, Edwards S, et al. (2003) Body mass index and colon cancer: an evaluation of the modifying effects of estrogen (United States). Cancer Causes Control 14(1):75–84.

    Article  PubMed  CAS  Google Scholar 

  124. Mao Y, Pan SY, Wen SW, et al. (2003) Physical inactivity, energy intake, obesity and the risk of rectal cancer in Canada. Int J Cancer 105(6):831–837.

    Article  PubMed  CAS  Google Scholar 

  125. Grundy SM, Blackburn G, Higgins M, et al. (1999) Physical activity in the prevention and treatment of obesity and its comorbidities. Med Sci Sports Exerc 31(11):S502–S508.

    PubMed  CAS  Google Scholar 

  126. Bensimhon DR, Kraus WE, Donahue MP. (2006) Obesity and physical activity: a review. Am Heart J 151(3):598–603.

    Article  PubMed  Google Scholar 

  127. Bouchard C, Tremblay A, Nadeau A, et al. (1990) Long-term exercise training with constant energy-intake.1. Effect on body-composition and selected metabolic variables. Int J Obesity 14(1):57–73.

    CAS  Google Scholar 

  128. Thompson HJ, Zhu ZJ, Jiang WQ. (2004) Weight control and breast cancer prevention: are the effects of reduced energy intake equivalent to those of increased energy expenditure? J Nutr 134(12):3407S–3411S.

    PubMed  CAS  Google Scholar 

  129. Parkin DM, Bray F, Ferlay J, et al. (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was supported by a grant from by Trafford General Hospital NHS Trust. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Harriss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harriss, D.J., Cable, N.T., George, K., Reilly, T., Renehan, A.G., Haboubi, N. (2010). Physical Activity Before and After Diagnosis of Colorectal Cancer. In: Saxton, J., Daley, A. (eds) Exercise and Cancer Survivorship. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1173-5_9

Download citation

Publish with us

Policies and ethics