Use of PSA-NCAM in Repair of the Central Nervous System

  • Abderrahman El MaaroufEmail author
  • Urs Rutishauser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


Polysialic acid (PSA) is a highly hydrated polymer whose presence at the cell surface can reduce cell interactions, and thereby increase tissue and cellular plasticity. Given its ability to create a permissive environment for cell migration and axonal growth, the potential of engineered overexpression of PSA to promote tissue repair has been explored in the adult CNS. Several promising results have been obtained that suggest that PSA engineering may become a valuable therapeutic tool.


Polysialic acid Plasticity Brain lesion Regeneration Stem cells 


  1. 1.
    Eckhardt M, Mühlenhoff M, Bethe A et al (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373:715-718PubMedCrossRefGoogle Scholar
  2. 2.
    Nakayama J, Fukuda MN, Fredette B et al (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 92:7031-7035PubMedCrossRefGoogle Scholar
  3. 3.
    Yang P, Yin X, Rutishauser U (1992) Intercellular space is affected by the polysialic acid content of NCAM. J Cell Biol 116:1487-1496PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson CP, Fujimoto I, Rutishauser U et al (2005) Direct evidence that neural cell adhesion molecule NCAM polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem 280:137-145PubMedGoogle Scholar
  5. 5.
    Fujimoto I, Bruses JL, Rutishauser U (2001) Regulation of cell adhesion by polysialic acid. Effects on cadherin, immunoglobulin cell adhesion molecule, and integrin function and independence from neural cell adhesion molecule binding or signaling activity. J Biol Chem 276:31745-31751PubMedCrossRefGoogle Scholar
  6. 6.
    Tang J, Rutishauser U, Landmesser L (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13:405-414PubMedCrossRefGoogle Scholar
  7. 7.
    Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system Nat. Rev Neurosci 9:26-35CrossRefGoogle Scholar
  8. 8.
    El Maarouf A, Rutishauser U (2005) Polysialic acid in adult brain plasticity. In: Fukuda M, Rutishauser U, Schnaar RL (eds) Neuroglycobiology. Oxford University Press, London, pp 39-57CrossRefGoogle Scholar
  9. 9.
    Tomasiewicz H, Ono K, Yee D et al (1993) Genetic deletion of a neural cell adhesion molecule variant N-CAM-180 produces distinct defects in the central nervous system. Neuron 11:1163-1174PubMedCrossRefGoogle Scholar
  10. 10.
    Ono K, Tomasiewicz H, Magnuson T et al (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13:595-609PubMedCrossRefGoogle Scholar
  11. 11.
    Cremer H, Lange R, Christoph A et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-369PubMedCrossRefGoogle Scholar
  12. 12.
    Hu H, Tomasiewicz H, Magnuson T et al (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16:735-743PubMedCrossRefGoogle Scholar
  13. 13.
    Petridis AK, El Maarouf A, Rutishauser U (2004) Polysialic acid regulates cell contact-dependent neuronal differentiation of progenitor cells from the subventricular zone. Dev Dyn 230:675-684PubMedCrossRefGoogle Scholar
  14. 14.
    Weinhold B, Seidenfaden R, Röckle I et al (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971-42977PubMedCrossRefGoogle Scholar
  15. 15.
    Angata K, Huckaby V, Ranscht B et al (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27:6659-6668PubMedCrossRefGoogle Scholar
  16. 16.
    Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93:14895-14900PubMedCrossRefGoogle Scholar
  17. Burgess AL, Seki T, Rutishauser U (2007) Removal of polysialic acid increases neuronal differentiation of adult neural progenitor cells in vitro and in vivo. Program No. 563.2. 2007 neuroscience meeting planner. Society for Neuroscience, Online, San Diego, CAGoogle Scholar
  18. 18.
    Yoshida K, Rutishauser U, Crandall JE et al (1999) Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons. J Neurosci 19:794-801PubMedGoogle Scholar
  19. 19.
    Tang J, Landmesser L, Rutishauser U (1992) Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8:1031-1044PubMedCrossRefGoogle Scholar
  20. 20.
    Tang J, Rutishauser U, Landmesser L (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13:405-414PubMedCrossRefGoogle Scholar
  21. 21.
    Yin X, Watanabe M, Rutishauser U (1995) Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121:3439-3446PubMedGoogle Scholar
  22. 22.
    El Maarouf A, Rutishauser U (2003) Removal of polysialic acid induces aberrant pathways, synaptic vesicle distribution, and terminal arborization of retinotectal axons. J Comp Neurol 460:203-211PubMedCrossRefGoogle Scholar
  23. 23.
    Daston MM, Bastmeyer M, Rutishauser U et al (1996) Spatially restricted increase in polysialic acid enhances corticospinal axon branching related to target recognition and innervation. J Neurosci 16:5488-5497PubMedGoogle Scholar
  24. 24.
    El Maarouf A, Petridis AK, Rutishauser U (2005) CNS axon regeneration is promoted by engineered expression of polysialic acid on scar astrocytes”. Program No. 223.10. 2005 neuroscience meeting planner. Society for Neuroscience, Online, Washington, DCGoogle Scholar
  25. 25.
    El Maarouf A, Petridis AK, Rutishauser U (2006) Use of polysialic acid in repair of the central nervous system. Proc Natl Acad Sci USA 103:16989-16994PubMedCrossRefGoogle Scholar
  26. 26.
    Cajal SG (1928) Degeneration and regeneration of the nervous system, Vol 1 and 2. Oxford University Press, LondonGoogle Scholar
  27. 27.
    David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931-933PubMedCrossRefGoogle Scholar
  28. 28.
    Rudge JS, Silver J (1990) Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10:3594-3603PubMedGoogle Scholar
  29. 29.
    Fawcett JW (1999) Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377-391PubMedCrossRefGoogle Scholar
  30. 30.
    Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14:118-124PubMedCrossRefGoogle Scholar
  31. 31.
    Batcholor PE, Howells DW (2003) CNS regeneration: clinical possibility or basic science fantasy? J Clin Neurosci 10:523-534CrossRefGoogle Scholar
  32. 32.
    Aubert I, Ridet JL, Schachner M et al (1998) Expression of L1 and PSA during sprouting and regeneration in the adult hippocampal formation. J Comp Neurol 399:1-19PubMedCrossRefGoogle Scholar
  33. 33.
    Dusart I, Morel MP, Wehrle R et al (1999) (1999) Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol 408:399-418PubMedCrossRefGoogle Scholar
  34. 34.
    Franz CK, Rutishauser U, Rafuse VF et al (2005) (2005) Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci 25:2081-2091PubMedCrossRefGoogle Scholar
  35. 35.
    Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95:1218-1223PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis BC, Chinnasamy N, Morgan RA et al (2001) (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J Virol 75:9339-9344PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Y, Zhang X, Yeh J et al (2007) Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J NeuroSci 25:351-361PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Ghadiri-Sani M, Zhang X et al (2007) Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons. Mol Cell Neurosci 35:109-119PubMedCrossRefGoogle Scholar
  39. 39.
    Bunge MB (2001) Bridging areas of injury in the spinal cord. Neuroscientist 7:325-339PubMedCrossRefGoogle Scholar
  40. 40.
    Bunge MB, Pearse DD (2003) Transplantation strategies to promote repair of the injured spinal cord. J Rehabil Res Dev 40:55-62PubMedCrossRefGoogle Scholar
  41. 41.
    Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209-233PubMedCrossRefGoogle Scholar
  42. 42.
    Papastefanaki F, Chen J, Lavdas AA et al (2007) Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord lesion 130(Pt 8):2159-2174Google Scholar
  43. 43.
    Magavi SS, Leavitt BR, Macklis JD et al (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951-955PubMedCrossRefGoogle Scholar
  44. 44.
    Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963-970PubMedCrossRefGoogle Scholar
  45. 45.
    Picard-Riera N, Decker L, Delarasse C et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211-13216PubMedCrossRefGoogle Scholar
  46. 46.
    Jin K, Sun Y, Xie L et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171-189PubMedCrossRefGoogle Scholar
  47. 47.
    Chen J, Magavi SSP, Macklis JD et al (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 101:16357-16362PubMedCrossRefGoogle Scholar
  48. 48.
    Glaser T, Brose C, Franceschini I et al (2007) NCAM polysialylation enhances the sensitivity of ES Cell-derived neural precursors to migration guidance cues. Stem Cells 25:3016-3025PubMedCrossRefGoogle Scholar
  49. 49.
    Franceschini I, Vitry S, Padilla F et al (2004) Migrating and myelinating potential of neural precursors engineered to overexpress PSA-NCAM. Mol Cell Neurosci 27:151-162PubMedCrossRefGoogle Scholar
  50. 50.
    Torregrossa P, Buhl L, Bancila M et al (2004) Selection of poly-alpha 2, 8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity. J Biol Chem 279:30707-30714PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cell BiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations