The Role of PSA-NCAM in Adult Neurogenesis

  • Eduardo Gascon
  • Laszlo Vutskits
  • Jozsef Zoltan KissEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


Recruitment of new neurons to existing circuits is a fascinating form of adult plasticity. In the mammalian brain, this process occurs in two discrete regions, the subventricular zone of the lateral ventricule (SVZ) and the subgranular zone of dentate gyrus (SGZ) in the hippocampus. Several recent studies suggest that isoforms of the neuronal cell adhesion molecule (NCAM) carrying the linear homopolymer of alpha 2,8-linked sialic acid (polysialic acid, PSA), play a role in regulating several steps of adult neurogenesis including migration, survival and process outgrowth of newly generated neurons. Here, we will review recent evidence on how PSA-NCAM might regulate the biological properties of new neurons in sites of adult neurogenesis.


Cell adhesion NCAM PSA Neurogenesis Neural precursor cells 


  1. 1.
    Hebb CO, Konzett H (1949) The effect of certain analgesic drugs on synaptic transmission as observed in the perfused superior cervical ganglion of the cat. Q J Exp Physiol Cogn Med Sci 35:213-217PubMedGoogle Scholar
  2. 2.
    Purves D, Andrews TJ (1997) The perception of transparent three-dimensional objects. Proc Natl Acad Sci USA 94:6517-6522PubMedCrossRefGoogle Scholar
  3. 3.
    Purves D et al (1994) Categories of cortical structure. Prog Brain Res 102:343-355PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez-Buylla A, Herrera DG, Wichterle H (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127:1-11PubMedCrossRefGoogle Scholar
  5. 5.
    Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. In: Novartis Foundation Symposium 231: 220-235; discussion 235-241, 302-306Google Scholar
  6. 6.
    Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46:1472-1479PubMedCrossRefGoogle Scholar
  7. 7.
    Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493-495PubMedCrossRefGoogle Scholar
  8. 8.
    Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9:261-272PubMedCrossRefGoogle Scholar
  9. 9.
    van Praag H et al (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427-13431PubMedCrossRefGoogle Scholar
  10. 10.
    Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723-727PubMedCrossRefGoogle Scholar
  11. 11.
    Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179-193PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia-Verdugo JM et al (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234-248PubMedCrossRefGoogle Scholar
  13. 13.
    Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543-550PubMedCrossRefGoogle Scholar
  14. 14.
    Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605-631PubMedCrossRefGoogle Scholar
  15. 15.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479-494PubMedCrossRefGoogle Scholar
  16. 16.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683-686PubMedCrossRefGoogle Scholar
  17. 17.
    Kempermann G et al (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447-452PubMedCrossRefGoogle Scholar
  18. 18.
    Seri B et al (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359-378PubMedCrossRefGoogle Scholar
  19. 19.
    Shen Q et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338-1340PubMedCrossRefGoogle Scholar
  20. 20.
    Ninkovic J, Gotz M (2007) Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol 17:338-344PubMedCrossRefGoogle Scholar
  21. 21.
    Edelman GM (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol 2:81-116PubMedCrossRefGoogle Scholar
  22. 22.
    Rougon G (1993) Structure, metabolism and cell biology of polysialic acids. Eur J Cell Biol 61:197-207PubMedGoogle Scholar
  23. 23.
    Rutishauser U, Landmesser L (1996) Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci 19:422-427PubMedGoogle Scholar
  24. 24.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129-164PubMedCrossRefGoogle Scholar
  25. 25.
    Rousselot P, Lois C, Alvarez-Buylla A (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. J Comp Neurol 351:51-61PubMedCrossRefGoogle Scholar
  26. 26.
    Edelman GM (1986) Cell adhesion molecules in neural histogenesis. Annu Rev Physiol 48:417-430PubMedCrossRefGoogle Scholar
  27. 27.
    Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223-250PubMedCrossRefGoogle Scholar
  28. 28.
    Seki T et al (2007) Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol 502:275-290PubMedCrossRefGoogle Scholar
  29. 29.
    Cremer H et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-459PubMedCrossRefGoogle Scholar
  30. 30.
    Tomasiewicz H et al (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11:1163-1174PubMedCrossRefGoogle Scholar
  31. 31.
    Ono K et al (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13:595-609PubMedCrossRefGoogle Scholar
  32. 32.
    Chazal G et al (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446-1457PubMedGoogle Scholar
  33. 33.
    Hu H et al (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16:735-743PubMedCrossRefGoogle Scholar
  34. 34.
    Barral-Moran MJ et al (2003) Oligodendrocyte progenitor migration in response to injury of glial monolayers requires the polysialic neural cell-adhesion molecule. J Neurosci Res 72:679-690PubMedCrossRefGoogle Scholar
  35. 35.
    Kiss JZ, Rougon G (1997) Cell biology of polysialic acid. Curr Opin Neurobiol 7:640-646PubMedCrossRefGoogle Scholar
  36. 36.
    Murakami S et al (2000) Enzymatic removal of polysialic acid from neural cell adhesion molecule perturbs the migration route of luteinizing hormone-releasing hormone neurons in the developing chick forebrain. J Comp Neurol 420:171-181PubMedCrossRefGoogle Scholar
  37. 37.
    Wang C, Rougon G, Kiss JZ (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J Neurosci 14:4446-4457PubMedGoogle Scholar
  38. 38.
    Angata K et al (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol 27:6659-6668PubMedCrossRefGoogle Scholar
  39. 39.
    Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978-981PubMedCrossRefGoogle Scholar
  40. 40.
    Hu H (2000) Polysialic acid regulates chain formation by migrating olfactory interneuron precursors. J Neurosci Res 61:480-492PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang H et al (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93-103PubMedCrossRefGoogle Scholar
  42. 42.
    Gascon E et al (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134:1181-1190PubMedCrossRefGoogle Scholar
  43. 43.
    Vutskits L et al (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J NeuroSci 13:1391-1402PubMedCrossRefGoogle Scholar
  44. 44.
    Hammond MS et al (2006) NCAM associated polysialic acid inhibits NR2B-containing NMDA receptors and prevents glutamate-induced cell death. J Biol Chem 281:34859-34869PubMedCrossRefGoogle Scholar
  45. 45.
    Vaithianathan T et al (2004) Neural cell adhesion molecule-associated polysialic acid potentiates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor currents. J Biol Chem 279:47975-47984PubMedCrossRefGoogle Scholar
  46. 46.
    Vutskits L, Gascon E, Kiss JZ (2003) Removal of PSA from NCAM affects the survival of magnocellular vasopressin- and oxytocin-producing neurons in organotypic cultures of the paraventricular nucleus. Eur J NeuroSci 17:2119-2126PubMedCrossRefGoogle Scholar
  47. 47.
    Dityatev A et al (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372-9382PubMedCrossRefGoogle Scholar
  48. 48.
    Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101-118PubMedCrossRefGoogle Scholar
  49. 49.
    Vutskits L et al (2006) The polysialylated neural cell adhesion molecule promotes neurogenesis in vitro. Neurochem Res 31:215-225PubMedCrossRefGoogle Scholar
  50. 50.
    Muller D et al (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315-4320PubMedCrossRefGoogle Scholar
  51. 51.
    Gascon E et al (2005) Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur J NeuroSci 21:69-80PubMedCrossRefGoogle Scholar
  52. 52.
    Barrett GL et al (1998) Rescue of dorsal root sensory neurons by nerve growth factor and neurotrophin-3, but not brain-derived neurotrophic factor or neurotrophin-4, is dependent on the level of the p75 neurotrophin receptor. Neuroscience 85:1321-1328PubMedCrossRefGoogle Scholar
  53. 53.
    Casaccia-Bonnefil P et al (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383:716-719PubMedCrossRefGoogle Scholar
  54. 54.
    Dobrowsky RT et al (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265:1596-1599PubMedCrossRefGoogle Scholar
  55. 55.
    Frago LM et al (1998) Nerve growth factor and ceramides modulate cell death in the early developing inner ear. J Cell Sci 111(Pt 5):549-556PubMedGoogle Scholar
  56. 56.
    Hirata H et al (2001) Nerve growth factor signaling of p75 induces differentiation and ceramide-mediated apoptosis in Schwann cells cultured from degenerating nerves. Glia. 36:245-258PubMedCrossRefGoogle Scholar
  57. 57.
    Cremer H et al (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323-335PubMedCrossRefGoogle Scholar
  58. 58.
    Weinhold B et al (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971-42977PubMedCrossRefGoogle Scholar
  59. 59.
    Petridis AK, El-Maarouf A, Rutishauser U (2004) Polysialic acid regulates cell contact-dependent neuronal differentiation of progenitor cells from the subventricular zone. Dev Dyn 230:675-684PubMedCrossRefGoogle Scholar
  60. 60.
    Seidenfaden R et al (2006) Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 32:187-198PubMedCrossRefGoogle Scholar
  61. 61.
    Seidenfaden R et al (2003) Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 23:5908-5918PubMedCrossRefGoogle Scholar
  62. 62.
    Barrett GL, Bartlett PF (1994) The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA 91:6501-6505PubMedCrossRefGoogle Scholar
  63. 63.
    Brennaman LH, Maness PF (2008) NCAM in neuropsychiatric and neurodegenerative disorders. Neurochem ResGoogle Scholar
  64. 64.
    Vawter MP (2000) Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 405:385-395PubMedCrossRefGoogle Scholar
  65. 65.
    Vawter MP et al (2000) Elevated concentration of N-CAM VASE isoforms in schizophrenia. J Psychiatr Res 34:25-34PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eduardo Gascon
    • 1
  • Laszlo Vutskits
    • 2
    • 3
  • Jozsef Zoltan Kiss
    • 2
    Email author
  1. 1.Developmental Biology Institute of Marseilles-Luminy (IBDML)Marseille Cedex 9France
  2. 2.Department of NeuroscienceUniversity of Geneva Medical SchoolGenevaSwitzerland
  3. 3.Department of Anesthesiology, Pharmacology and Intensive CareUniversity Hospital of GenevaGenevaSwitzerland

Personalised recommendations