Advertisement

The Role of ATP in the Regulation of NCAM Function

  • Martin V. HübschmannEmail author
  • Galina Skladchikova
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)

Abstract

Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors, and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a direct ATP-NCAM interaction and discuss its functional implications. The ectodomain of NCAM contains the ATP binding Walker motif A and has intrinsic ATPase activity, which could modulate NCAM-dependent signaling processes. NCAM interacts directly with and signals through FGFR. The NCAM binding site to ATP overlaps with the site of NCAM-FGFR interaction, and ATP is capable of disrupting NCAM-FGFR binding. This implies that NCAM signaling through FGFR can be regulated by ATP, which is supported by the observation that ATP can abrogate NCAM-induced neurite outgrowth. Finally, ATP can induce NCAM ectodomain shedding, possibly affecting the structural plasticity associated with learning and memory.

Keywords

NCAM ATP Ecto-ATPase Extracellular proteolysis FGFR Neural cell differentiation 

References

  1. 1.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80(3):129-164PubMedCrossRefGoogle Scholar
  2. 2.
    Walmod PS, Kolkova K, Berezin V et al (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29(11):2015-2035PubMedCrossRefGoogle Scholar
  3. 3.
    Williams EJ, Furness J, Walsh FS et al (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13(3):583-594PubMedCrossRefGoogle Scholar
  4. 4.
    Saffell JL, Williams EJ, Mason IJ et al (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18(2):231-242PubMedCrossRefGoogle Scholar
  5. 5.
    Kiselyov VV, Skladchikova G, Hinsby AM et al (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11(6):691-701PubMedCrossRefGoogle Scholar
  6. 6.
    Walker JE, Saraste M, Runswick MJ et al (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945-951PubMedGoogle Scholar
  7. 7.
    Burnstock G (1995) Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol 46(4):365-384PubMedGoogle Scholar
  8. 8.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2(3):241-245PubMedCrossRefGoogle Scholar
  9. 9.
    Mori M, Heuss C, Gahwiler BH et al (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535(Pt 1):115-123PubMedCrossRefGoogle Scholar
  10. 10.
    Volknandt W, Zimmermann H (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47(5):1449-1462PubMedCrossRefGoogle Scholar
  11. 11.
    Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589-597PubMedCrossRefGoogle Scholar
  12. 12.
    Stout CE, Costantin JL, Naus CC et al (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482-10488PubMedCrossRefGoogle Scholar
  13. 13.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378-1385PubMedCrossRefGoogle Scholar
  14. 14.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4-5):299-309PubMedCrossRefGoogle Scholar
  15. 15.
    Bonan CD, Dias MM, Battastini AM et al (1998) Inhibitory avoidance learning inhibits ectonucleotidases activities in hippocampal synaptosomes of adult rats. Neurochem Res 23(7):977-982PubMedCrossRefGoogle Scholar
  16. 16.
    Bonan CD, Roesler R, Pereira GS et al (2000) Learning-specific decrease in synaptosomal ATP diphosphohydrolase activity from hippocampus and entorhinal cortex of adult rats. Brain Res 854(1-2):253-256PubMedCrossRefGoogle Scholar
  17. 17.
    Pedrazza EL, Riboldi GP, Pereira GS et al (2007) Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci Lett 413(1):21-24PubMedCrossRefGoogle Scholar
  18. 18.
    Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452(5):573-588PubMedCrossRefGoogle Scholar
  19. 19.
    Lin JH, Takano T, Arcuino G et al (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302(1):356-366PubMedCrossRefGoogle Scholar
  20. 20.
    Ryu JK, Choi HB, Hatori K et al (2003) Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J Neurosci Res 72(3):352-362PubMedCrossRefGoogle Scholar
  21. 21.
    D’Ambrosi N, Murra B, Cavaliere F et al (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108(3):527-534PubMedCrossRefGoogle Scholar
  22. 22.
    Lakshmi S, Joshi PG (2006) Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141(1):179-189PubMedCrossRefGoogle Scholar
  23. 23.
    Skladchikova G, Ronn LC, Berezin V et al (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57(2):207-218PubMedCrossRefGoogle Scholar
  24. 24.
    Cheung KK, Chan WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133(4):937-945PubMedCrossRefGoogle Scholar
  25. 25.
    Fujii S, Kato H, Kuroda Y (1999) Extracellular adenosine 5′-triphosphate plus activation of glutamatergic receptors induces long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Neurosci Lett 276(1):21-24PubMedCrossRefGoogle Scholar
  26. 26.
    Wieraszko A, Seyfried TN (1989) ATP-induced synaptic potentiation in hippocampal slices. Brain Res 491(2):356-359PubMedCrossRefGoogle Scholar
  27. 27.
    Yamazaki Y, Kaneko K, Fujii S et al (2003) Long-term potentiation and long-term depression induced by local application of ATP to hippocampal CA1 neurons of the guinea pig. Hippocampus 13(1):81-92PubMedCrossRefGoogle Scholar
  28. 28.
    Fujii S, Kato H, Kuroda Y (2002) Cooperativity between extracellular adenosine 5′-triphosphate and activation of N-methyl-D-aspartate receptors in long-term potentiation induction in hippocampal CA1 neurons. Neuroscience 113(3):617-628PubMedCrossRefGoogle Scholar
  29. 29.
    Kuroda Y, Ichikawa M, Muramoto K et al (1992) Block of synapse formation between cerebral cortical neurons by a protein kinase inhibitor. Neurosci Lett 135(2):255-258PubMedCrossRefGoogle Scholar
  30. 30.
    Nagashima K, Nakanishi S, Matsuda Y (1991) Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane. FEBS Lett 293(1-2):119-123PubMedCrossRefGoogle Scholar
  31. 31.
    Ehrlich YH, Davis TB, Bock E et al (1986) Ecto-protein kinase activity on the external surface of neural cells. Nature 320(6057):67-70PubMedCrossRefGoogle Scholar
  32. 32.
    Dzhandzhugazyan K, Bock E (1993) Demonstration of (Ca(2+)-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336(2):279-283PubMedCrossRefGoogle Scholar
  33. 33.
    Stout JG, Brittsan A, Kirley TL (1994) Brain ECTO-Mg-ATPase is not the neural cell adhesion molecule. Biochem Mol Biol Int 33(6):1091-1098PubMedGoogle Scholar
  34. 34.
    Dzhandzhugazyan K, Bock E (1997) Demonstration of an extracellular ATP-binding site in NCAM: functional implications of nucleotide binding. Biochemistry 36(49):15381-15395PubMedCrossRefGoogle Scholar
  35. 35.
    Bock E, Edvardsen K, Gibson A et al (1987) Characterization of soluble forms of NCAM. FEBS Lett 225(1-2):33-36PubMedCrossRefGoogle Scholar
  36. 36.
    Dalseg AM, Linnemann D, Bock E (1989) Soluble neural cell adhesion molecule in brain, cerebrospinal fluid and plasma in the developing rat. Int J Dev Neurosci 7(2):209-217PubMedCrossRefGoogle Scholar
  37. 37.
    He HT, Finne J, Goridis C (1987) Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J Cell Biol 105(6 Pt 1):2489-2500PubMedCrossRefGoogle Scholar
  38. 38.
    Rabinowitz JE, Rutishauser U, Magnuson T (1996) Targeted mutation of Ncam to produce a secreted molecule results in a dominant embryonic lethality. Proc Natl Acad Sci USA 93(13):6421-6424PubMedCrossRefGoogle Scholar
  39. 39.
    Kadmon G, Kowitz A, Altevogt P et al (1990) The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions. J Cell Biol 110(1):193-208PubMedCrossRefGoogle Scholar
  40. 40.
    Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113(7):867-879PubMedCrossRefGoogle Scholar
  41. 41.
    Kallapur SG, Akeson RA (1992) The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 33(4):538-548PubMedCrossRefGoogle Scholar
  42. 42.
    Reyes AA, Akeson R, Brezina L et al (1990) Structural requirements for neural cell adhesion molecule-heparin interaction. Cell Regul 1(8):567-576PubMedGoogle Scholar
  43. 43.
    Poltorak M, Frye MA, Wright R et al (1996) Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem 66(4):1532-1538PubMedCrossRefGoogle Scholar
  44. 44.
    Vawter MP (2000) Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 405(1-3):385-395PubMedCrossRefGoogle Scholar
  45. 45.
    Poltorak M, Wright R, Hemperly JJ et al (1997) Monozygotic twins discordant for schizophrenia are discordant for N-CAM and L1 in CSF. Brain Res 751(1):152-154PubMedCrossRefGoogle Scholar
  46. 46.
    van Kammen DP, Poltorak M, Kelley ME et al (1998) Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia. Biol Psychiatry 43(9):680-686PubMedCrossRefGoogle Scholar
  47. 47.
    Vawter MP, Cannon-Spoor HE, Hemperly JJ et al (1998) Abnormal expression of cell recognition molecules in schizophrenia. Exp Neurol 149(2):424-432PubMedCrossRefGoogle Scholar
  48. 48.
    Vawter MP, Usen N, Thatcher L et al (2001) Characterization of human cleaved N-CAM and association with schizophrenia. Exp Neurol 172(1):29-46PubMedCrossRefGoogle Scholar
  49. 49.
    Shenton ME, Dickey CC, Frumin M et al (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1-2):1-52PubMedCrossRefGoogle Scholar
  50. 50.
    Pillai-Nair N, Panicker AK, Rodriguiz RM et al (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25(18):4659-4671PubMedCrossRefGoogle Scholar
  51. 51.
    Lang UE, Puls I, Muller DJ et al (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20(6):687-702PubMedCrossRefGoogle Scholar
  52. 52.
    Wassef A, Baker J, Kochan LD (2003) GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23(6):601-640PubMedCrossRefGoogle Scholar
  53. 53.
    Gower HJ, Barton CH, Elsom VL et al (1988) Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55(6):955-964PubMedCrossRefGoogle Scholar
  54. 54.
    Endo A, Nagai N, Urano T et al (1998) Proteolysis of highly polysialylated NCAM by the tissue plasminogen activator-plasmin system in rats. Neurosci Lett 246(1):37-40PubMedCrossRefGoogle Scholar
  55. 55.
    Diestel S, Hinkle CL, Schmitz B et al (2005) NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding. J Neurochem 95(6):1777-1784PubMedCrossRefGoogle Scholar
  56. 56.
    Hubschmann MV, Skladchikova G, Bock E et al (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80(6):826-837PubMedCrossRefGoogle Scholar
  57. 57.
    Kalus I, Bormann U, Mzoughi M et al (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98(1):78-88PubMedCrossRefGoogle Scholar
  58. 58.
    Hinkle CL, Diestel S, Lieberman J et al (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66(12):1378-1395PubMedCrossRefGoogle Scholar
  59. 59.
    Fazeli MS, Breen K, Errington ML et al (1994) Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett 169(1-2):77-80PubMedCrossRefGoogle Scholar
  60. 60.
    Wieraszko A, Goldsmith G, Seyfried TN (1989) Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res 485(2):244-250PubMedCrossRefGoogle Scholar
  61. 61.
    Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140-154PubMedCrossRefGoogle Scholar
  62. 62.
    Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10(1):19-26PubMedCrossRefGoogle Scholar
  63. 63.
    Skaper SD (2005) Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. Ann N Y Acad Sci 1053:376-385PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations