Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses

  • Janne Nielsen
  • Nikolaj Kulahin
  • Peter S. WalmodEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


Cell adhesion molecules (CAMs) mediate cell-to-cell interactions and interactions between cells and the extracellular matrix (ECM). The neural cell adhesion molecule (NCAM), a prototypic member of the immunoglobulin (Ig) superfamily of CAMs, mediates adhesion through homophilic and heterophilic interactions, thereby modulating a range of biological processes. This review summarizes interactions between NCAM and other CAMs and ECM proteins. Additionally, the role of NCAM as a receptor for rabies virus, and its implications in rabies infections is briefly described. Interactions between NCAM and its heterophilic partners involve most of the NCAM extracellular modules and are mediated via amino acids and carbohydrates. The interactions promote cell adhesion and trigger signal transduction and alterations in cytoskeletal dynamics and organization. Heterophilic NCAM interactions may modulate, or be modulated by, homophilic NCAM interactions. Furthermore, some of the interactions are mutually exclusive, whereas others might lead to the formation of multimeric protein complexes. Consequently, biological processes affected by NCAM interactions are regulated in a complex manner involving many extracellular protein interactions.


Cell adhesion molecule Extracellular matrix Proteoglycan Prion Rabies virus 



Carbonic anhydrase


Cell adhesion molecule


Close homolog of L1


Central nervous system


Chondroitin sulfate proteoglycans


Extracellular matrix


Fibroblast growth factor receptor


Fibronectin type 3




Glial cell line-derived neurotrophic factor




Heparin-binding growth-associated molecule


Heparin binding domain


Human natural killer-1


Heparan sulfate proteoglycans


Equilibrium dissociation constant


Laminin receptor precursor


Muscle-specific domain 1


Neural cell adhesion molecule


Nuclear magnetic resonance




Phosphatidylinositol-specific phospholipase C


Protease resistant protein


Receptor protein tyrosine phosphatase


Polysialic acid


Rabies virus


Sucrose octasulfate


Surface plasmon resonance


Variable alternative spliced exon



The financial support from “Snedkermester Sophus Jacobsen og hustru Astrid Jacobsens Fond”, “Det Lægevidenskabelige Fakultets Fond for videnskabeligt ansatte kandidater og studerende ved Københavns Universitet”, ENKAM Pharmaceuticals A/S, and the Graduate School of Neuroscience, University of Copenhagen, and the EU-funded brain research consortium PROMEMORIA (LSHM-CT-2005-512012) is gratefully acknowledged.


  1. 1.
    Filiz S, Dalcik H, Yardimoglu M, Gonca S, Ceylan S (2002) Localization of neural cell adhesion molecule (N-CAM) immunoreactivity in adult rat tissues. Biotech Histochem 77:127-135PubMedGoogle Scholar
  2. 2.
    Burroughs CL, Watanabe M, Morse DE (1991) Distribution of the neural cell adhesion molecule (NCAM) during heart development. J Mol Cell Cardiol 23:1411-1422PubMedGoogle Scholar
  3. 3.
    Gaardsvoll H, Krog L, Zhernosekov D, Andersson AM, Edvardsen K, Olsen M, Bock E, Linnemann D (1993) Age-related changes in expression of neural cell adhesion molecule (NCAM) in heart: a comparative study of newborn, adult and aged rats. Eur J Cell Biol 61:100-107PubMedGoogle Scholar
  4. 4.
    Reyes AA, Small SJ, Akeson R (1991) At least 27 alternatively spliced forms of the neural cell adhesion molecule mRNA are expressed during rat heart development. Mol Cell Biol 11:1654-1661PubMedGoogle Scholar
  5. 5.
    Fidzianska A, Kaminska A (1995) Neural cell adhesion molecule (N-CAM) as a marker of muscle tissue alternations: review of the literature and own observations. Folia Neuropathol 33:125-128PubMedGoogle Scholar
  6. 6.
    Carson W, Caligiuri M (1996) Natural killer cell subsets and development. Methods 9:327-343PubMedGoogle Scholar
  7. 7.
    Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123-137PubMedGoogle Scholar
  8. 8.
    Kontogianni K, Nicholson AG, Butcher D, Sheppard MN (2005) CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artefact. J Clin Pathol 58:978-980PubMedGoogle Scholar
  9. 9.
    Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P, Amiot M, Pellat-Deceunynck C (2006) The phenotype of normal, reactive and malignant plasma cells: identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica 91:1234-1240PubMedGoogle Scholar
  10. 10.
    Garnache-Ottou F, Feuillard J, Saas P (2007) Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity? Br J Haematol 136:539-548PubMedGoogle Scholar
  11. 11.
    Walmod PS, Pedersen MV, Berezin V, Bock E (2007) Cell adhesion molecules of the immunoglobulin superfamily in the nervous system. In: Lajtha A, Banik N (eds) Handbook of neurochemistry and molecular neurobiology: neural protein metabolism and function, 3rd edn. Springer, New York, pp 35-151Google Scholar
  12. 12.
    Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691-701PubMedGoogle Scholar
  13. 13.
    Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867-879PubMedGoogle Scholar
  14. 14.
    Sjostrand D, Carlsson J, Paratcha G, Persson B, Ibanez CF (2007) Disruption of the GDNF binding site in NCAM dissociates ligand binding and homophilic cell adhesion. J Biol Chem 282:12734-12740PubMedGoogle Scholar
  15. 15.
    Kiselyov VV, Soroka V, Berezin V, Bock E (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169-1179PubMedGoogle Scholar
  16. 16.
    Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2007) NCAM-induced intracellular signaling revisited. J Neurosci Res 86:727-743Google Scholar
  17. 17.
    Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855-3862PubMedGoogle Scholar
  18. 18.
    Hubschmann MV, Skladchikova G, Bock E, Berezin V (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80:826-837PubMedGoogle Scholar
  19. 19.
    Kalus I, Bormann U, Mzoughi M, Schachner M, Kleene R (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98:78-88PubMedGoogle Scholar
  20. 20.
    He HT, Barbet J, Chaix JC, Goridis C (1986) Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule. EMBO J 5:2489-2494PubMedGoogle Scholar
  21. 21.
    He HT, Finne J, Goridis C (1987) Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J Cell Biol 105:2489-2500PubMedGoogle Scholar
  22. 22.
    Bock E, Edvardsen K, Gibson A, Linnemann D, Lyles JM, Nybroe O (1987) Characterization of soluble forms of NCAM. FEBS Lett 225:33-36PubMedGoogle Scholar
  23. 23.
    Gower HJ, Barton CH, Elsom VL, Thompson J, Moore SE, Dickson G, Walsh FS (1988) Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55:955-964PubMedGoogle Scholar
  24. 24.
    Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799-806PubMedGoogle Scholar
  25. 25.
    Small SJ, Haines SL, Akeson RA (1988) Polypeptide variation in an N-CAM extracellular immunoglobulin-like fold is developmentally regulated through alternative splicing. Neuron 1:1007-1017PubMedGoogle Scholar
  26. 26.
    Dickson G, Gower HJ, Barton CH, Prentice HM, Elsom VL, Moore SE, Cox RD, Quinn C, Putt W, Walsh FS (1987) Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell 50:1119-1130PubMedGoogle Scholar
  27. 27.
    Thompson J, Dickson G, Moore SE, Gower HJ, Putt W, Kenimer JG, Barton CH, Walsh FS (1989) Alternative splicing of the neural cell adhesion molecule gene generates variant extracellular domain structure in skeletal muscle and brain. Genes Dev 3:348-357PubMedGoogle Scholar
  28. 28.
    Santoni MJ, Barthels D, Vopper G, Boned A, Goridis C, Wille W (1989) Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J 8:385-392PubMedGoogle Scholar
  29. 29.
    Albach C, Damoc E, Denzinger T, Schachner M, Przybylski M, Schmitz B (2004) Identification of N-glycosylation sites of the murine neural cell adhesion molecule NCAM by MALDI-TOF and MALDI-FTICR mass spectrometry. Anal Bioanal Chem 378:1129-1135PubMedGoogle Scholar
  30. 30.
    Walsh FS, Parekh RB, Moore SE, Dickson G, Barton CH, Gower HJ, Dwek RA, Rademacher TW (1989) Tissue specific O-linked glycosylation of the neural cell adhesion molecule (N-CAM). Development 105:803-811PubMedGoogle Scholar
  31. 31.
    Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zahringer U, Schachner M (2001) Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11:373-384PubMedGoogle Scholar
  32. 32.
    von Der Ohe M, Wheeler SF, Wuhrer M, Harvey DJ, Liedtke S, Muhlenhoff M, Gerardy-Schahn R, Geyer H, Dwek RA, Geyer R, Wing DR, Schachner M (2002) Localization and characterization of polysialic acid-containing N-linked glycans from bovine NCAM. Glycobiology 12:47-63Google Scholar
  33. 33.
    Wuhrer M, Geyer H, von Der Ohe M, Gerardy-Schahn R, Schachner M, Geyer R (2003) Localization of defined carbohydrate epitopes in bovine polysialylated NCAM. Biochimie 85:207-218PubMedGoogle Scholar
  34. 34.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129-164PubMedGoogle Scholar
  35. 35.
    Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101-118PubMedGoogle Scholar
  36. 36.
    Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26-35PubMedGoogle Scholar
  37. 37.
    Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311:153-155PubMedGoogle Scholar
  38. 38.
    Cole GJ, Schachner M (1987) Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. Neurosci Lett 78:227-232PubMedGoogle Scholar
  39. 39.
    Ong E, Suzuki M, Belot F, Yeh JC, Franceschini I, Angata K, Hindsgaul O, Fukuda M (2002) Biosynthesis of HNK-1 glycans on O-linked oligosaccharides attached to the neural cell adhesion molecule (NCAM): the requirement for core 2β1, 6-N-acetylglucosaminyltransferase and the muscle-specific domain in NCAM. J Biol Chem 277:18182-18190PubMedGoogle Scholar
  40. 40.
    Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, Mori K (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17:5830-5842PubMedGoogle Scholar
  41. 41.
    Paoloni-Giacobino A, Chen H, Antonarakis SE (1997) Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 43:43-51PubMedGoogle Scholar
  42. 42.
    McGarry RC, Helfand SL, Quarles RH, Roder JC (1983) Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1. Nature 306:376-378PubMedGoogle Scholar
  43. 43.
    Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M (1994) Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res 54:2514-2520PubMedGoogle Scholar
  44. 44.
    Holm J, Hillenbrand R, Steuber V, Bartsch U, Moos M, Lubbert H, Montag D, Schachner M (1996) Structural features of a close homologue of L1 (CHL1) in the mouse: a new member of the L1 family of neural recognition molecules. Eur J Neurosci 8:1613-1629PubMedGoogle Scholar
  45. 45.
    Hillenbrand R, Molthagen M, Montag D, Schachner M (1999) The close homologue of the neural adhesion molecule L1 (CHL1): patterns of expression and promotion of neurite outgrowth by heterophilic interactions. Eur J Neurosci 11:813-826PubMedGoogle Scholar
  46. 46.
    Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5:195-208PubMedGoogle Scholar
  47. 47.
    Yu RK, Yanagisawa M (2006) Glycobiology of neural stem cells. CNS Neurol Disord Drug Targets 5:415-423PubMedGoogle Scholar
  48. 48.
    Key B, Akeson RA (1990) Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM). J Cell Biol 110:1729-1743PubMedGoogle Scholar
  49. 49.
    Key B, Akeson RA (1991) Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron 6:381-396PubMedGoogle Scholar
  50. 50.
    Pestean A, Krizbai I, Bottcher H, Parducz A, Joo F, Wolff JR (1995) Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats. Neurosci Lett 195:117-120PubMedGoogle Scholar
  51. 51.
    Dowsing B, Puche A, Hearn C, Key B (1997) Presence of novel N-CAM glycoforms in the rat olfactory system. J Neurobiol 32:659-670PubMedGoogle Scholar
  52. 52.
    Hu W, Rosenberg RN, Stuve O (2007) Prion proteins: a biological role beyond prion diseases. Acta Neurol Scand 116:75-82PubMedGoogle Scholar
  53. 53.
    Sakaguchi S (2007) Molecular biology of prion protein and its first homologous protein. J Med Invest 54:211-223PubMedGoogle Scholar
  54. 54.
    Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3:1383-1388PubMedGoogle Scholar
  55. 55.
    Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76:85-92PubMedGoogle Scholar
  56. 56.
    Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314:1209-1225PubMedGoogle Scholar
  57. 57.
    Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21:3307-3316PubMedGoogle Scholar
  58. 58.
    Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341-354PubMedGoogle Scholar
  59. 59.
    Hajj GN, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KC, Juliano MA, Jacchieri SG, Zanata SM, Martins VR (2007) Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci 120:1915-1926PubMedGoogle Scholar
  60. 60.
    Kleene R, Loers G, Langer J, Frobert Y, Buck F, Schachner M (2007) Prion protein regulates glutamate-dependent lactate transport of astrocytes. J Neurosci 27:12331-12340PubMedGoogle Scholar
  61. 61.
    Korshunova I, Novitskaya V, Kiryushko D, Pedersen N, Kolkova K, Kropotova E, Mosevitsky M, Rayko M, Morrow JS, Ginzburg I, Berezin V, Bock E (2007) GAP-43 regulates NCAM-180-mediated neurite outgrowth. J Neurochem 100:1599-1612PubMedGoogle Scholar
  62. 62.
    Little EB, Edelman GM, Cunningham BA (1998) Palmitoylation of the cytoplasmic domain of the neural cell adhesion molecule N-CAM serves as an anchor to cellular membranes. Cell Adhes Commun 6:415-430PubMedGoogle Scholar
  63. 63.
    Bodrikov V, Leshchyns’ka I, Sytnyk V, Overvoorde J, den Hertog J, Schachner M (2005) RPTPα is essential for NCAM-mediated p59fyn activation and neurite elongation. J Cell Biol 168:127-139PubMedGoogle Scholar
  64. 64.
    Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157:521-532PubMedGoogle Scholar
  65. 65.
    Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21:3317-3326PubMedGoogle Scholar
  66. 66.
    Chen S, Mange A, Dong L, Lehmann S, Schachner M (2003) Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 22:227-233PubMedGoogle Scholar
  67. 67.
    Coitinho AS, Lopes MH, Hajj GN, Rossato JI, Freitas AR, Castro CC, Cammarota M, Brentani RR, Izquierdo I, Martins VR (2007) Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiol Dis 26:282-290PubMedGoogle Scholar
  68. 68.
    Solforosi L, Criado JR, McGavern DB, Wirz S, Sanchez-Alavez M, Sugama S, DeGiorgio LA, Volpe BT, Wiseman E, Abalos G, Masliah E, Gilden D, Oldstone MB, Conti B, Williamson RA (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303:1514-1516PubMedGoogle Scholar
  69. 69.
    Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828-13836PubMedGoogle Scholar
  70. 70.
    Furley AJ, Morton SB, Manalo D, Karagogeos D, Dodd J, Jessell TM (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61:157-170PubMedGoogle Scholar
  71. 71.
    Denaxa M, Chan CH, Schachner M, Parnavelas JG, Karagogeos D (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128:4635-4644PubMedGoogle Scholar
  72. 72.
    Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W (2000) The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 101:425-433PubMedGoogle Scholar
  73. 73.
    Kunz B, Lierheimer R, Rader C, Spirig M, Ziegler U, Sonderegger P (2002) Axonin-1/TAG-1 mediates cell-cell adhesion by a cis-assisted trans-interaction. J Biol Chem 277:4551-4557PubMedGoogle Scholar
  74. 74.
    Mortl M, Sonderegger P, Diederichs K, Welte W (2007) The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction. Protein Sci 16:2174-2183PubMedGoogle Scholar
  75. 75.
    Milev P, Maurel P, Haring M, Margolis RK, Margolis RU (1996) TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-ζ/β and N-CAM. J Biol Chem 271:15716-15723PubMedGoogle Scholar
  76. 76.
    Pavlou O, Theodorakis K, Falk J, Kutsche M, Schachner M, Faivre-Sarrailh C, Karagogeos D (2002) Analysis of interactions of the adhesion molecule TAG-1 and its domains with other immunoglobulin superfamily members. Mol Cell Neurosci 20:367-381PubMedGoogle Scholar
  77. 77.
    Malhotra JD, Tsiotra P, Karagogeos D, Hortsch M (1998) Cis-activation of L1-mediated ankyrin recruitment by TAG-1 homophilic cell adhesion. J Biol Chem 273:33354-33359PubMedGoogle Scholar
  78. 78.
    Morales G, Hubert M, Brummendorf T, Treubert U, Tarnok A, Schwarz U, Rathjen FG (1993) Induction of axonal growth by heterophilic interactions between the cell surface recognition proteins F11 and Nr-CAM/Bravo. Neuron 11:1113-1122PubMedGoogle Scholar
  79. 79.
    Volkmer H, Zacharias U, Norenberg U, Rathjen FG (1998) Dissection of complex molecular interactions of neurofascin with axonin-1, F11, and tenascin-R, which promote attachment and neurite formation of tectal cells. J Cell Biol 142:1083-1093PubMedGoogle Scholar
  80. 80.
    Felsenfeld DP, Hynes MA, Skoler KM, Furley AJ, Jessell TM (1994) TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and β1 integrins. Neuron 12:675-690PubMedGoogle Scholar
  81. 81.
    Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P (1998) Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 143:1673-1690PubMedGoogle Scholar
  82. 82.
    Schurmann G, Haspel J, Grumet M, Erickson HP (2001) Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. Mol Biol Cell 12:1765-1773PubMedGoogle Scholar
  83. 83.
    Haspel J, Grumet M (2003) The L1CAM extracellular region: a multi-domain protein with modular and cooperative binding modes. Front Biosci 8:s1210-s1225PubMedGoogle Scholar
  84. 84.
    Brummendorf T, Hubert M, Treubert U, Leuschner R, Tarnok A, Rathjen FG (1993) The axonal recognition molecule F11 is a multifunctional protein: specific domains mediate interactions with Ng-CAM and restrictin. Neuron 10:711-727PubMedGoogle Scholar
  85. 85.
    Kadmon G, von Bohlen und Halbach F, Horstkorte R, Eckert M, Altevogt P, Schachner M (1995) Evidence for cis interaction and cooperative signalling by the heat-stable antigen nectadrin (murine CD24) and the cell adhesion molecule L1 in neurons. Eur J Neurosci 7:993-1004PubMedGoogle Scholar
  86. 86.
    Falk J, Bonnon C, Girault JA, Faivre-Sarrailh C (2002) F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 94:327-334PubMedGoogle Scholar
  87. 87.
    Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E (2007) Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci 37:528-536PubMedGoogle Scholar
  88. 88.
    Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993) The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J Cell Biol 121:1409-1421PubMedGoogle Scholar
  89. 89.
    Heiland PC, Griffith LS, Lange R, Schachner M, Hertlein B, Traub O, Schmitz B (1998) Tyrosine and serine phosphorylation of the neural cell adhesion molecule L1 is implicated in its oligomannosidic glycan dependent association with NCAM and neurite outgrowth. Eur J Cell Biol 75:97-106PubMedGoogle Scholar
  90. 90.
    Kadmon G, Kowitz A, Altevogt P, Schachner M (1990) The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions. J Cell Biol 110:193-208PubMedGoogle Scholar
  91. 91.
    Kadmon G, Kowitz A, Altevogt P, Schachner M (1990) Functional cooperation between the neural adhesion molecules L1 and N-CAM is carbohydrate dependent. J Cell Biol 110:209-218PubMedGoogle Scholar
  92. 92.
    Kristiansen LV, Marques FA, Soroka V, Ronn LC, Kiselyov V, Pedersen N, Berezin V, Bock E (1999) Homophilic NCAM interactions interfere with L1 stimulated neurite outgrowth. FEBS Lett 464:30-34PubMedGoogle Scholar
  93. 93.
    Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35:255-262PubMedGoogle Scholar
  94. 94.
    Kleene R, Yang H, Kutsche M, Schachner M (2001) The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and inhibition of neurite outgrowth. J Biol Chem 276:21656-21663PubMedGoogle Scholar
  95. 95.
    Sammar M, Aigner S, Altevogt P (1997) Heat-stable antigen (mouse CD24) in the brain: dual but distinct interaction with P-selectin and L1. Biochim Biophys Acta 1337:287-294PubMedGoogle Scholar
  96. 96.
    Liakhovich AV, Aksenov NL (2000) Topography of cell ahesion molecules CD9, CD24, L1 and N-CAM on the surface of neuroblastoma cells studied using chemical cross linking. Tsitologiia 42:399-403PubMedGoogle Scholar
  97. 97.
    Calaora V, Chazal G, Nielsen PJ, Rougon G, Moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73:581-594PubMedGoogle Scholar
  98. 98.
    Bandtlow CE, Zimmermann DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80:1267-1290PubMedGoogle Scholar
  99. 99.
    Cole GJ, Schubert D, Glaser L (1985) Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol 100:1192-1199PubMedGoogle Scholar
  100. 100.
    Bjork I, Lindahl U (1982) Mechanism of the anticoagulant action of heparin. Mol Cell Biochem 48:161-182PubMedGoogle Scholar
  101. 101.
    Cole GJ, Glaser L (1986) A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol 102:403-412PubMedGoogle Scholar
  102. 102.
    Cole GJ, Loewy A, Cross NV, Akeson R, Glaser L (1986) Topographic localization of the heparin-binding domain of the neural cell adhesion molecule N-CAM. J Cell Biol 103:1739-1744PubMedGoogle Scholar
  103. 103.
    Cole GJ, Akeson R (1989) Identification of a heparin binding domain of the neural cell adhesion molecule N-CAM using synthetic peptides. Neuron 2:1157-1165PubMedGoogle Scholar
  104. 104.
    Reyes AA, Akeson R, Brezina L, Cole GJ (1990) Structural requirements for neural cell adhesion molecule-heparin interaction. Cell Regul 1:567-576PubMedGoogle Scholar
  105. 105.
    Kiselyov VV, Berezin V, Maar TE, Soroka V, Edvardsen K, Schousboe A, Bock E (1997) The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 272:10125-10134PubMedGoogle Scholar
  106. 106.
    Frei T, von Bohlen und Halbach F, Wille W, Schachner M (1992) Different extracellular domains of the neural cell adhesion molecule (N-CAM) are involved in different functions. J Cell Biol 118:177-194PubMedGoogle Scholar
  107. 107.
    Kulahin N, Rudenko O, Kiselyov V, Poulsen FM, Berezin V, Bock E (2005) Modulation of the homophilic interaction between the first and second Ig modules of neural cell adhesion molecule by heparin. J Neurochem 95:46-55PubMedGoogle Scholar
  108. 108.
    Nybroe O, Moran N, Bock E (1989) Equilibrium binding analysis of neural cell adhesion molecule binding to heparin. J Neurochem 52:1947-1949PubMedGoogle Scholar
  109. 109.
    Herndon ME, Stipp CS, Lander AD (1999) Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Glycobiology 9:143-155PubMedGoogle Scholar
  110. 110.
    Jensen PH, Soroka V, Thomsen NK, Ralets I, Berezin V, Bock E, Poulsen FM (1999) Structure and interactions of NCAM modules 1 and 2, basic elements in neural cell adhesion. Nat Struct Biol 6:486-493PubMedGoogle Scholar
  111. 111.
    Moran N, Bock E (1988) Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Lett 242:121-124PubMedGoogle Scholar
  112. 112.
    Burg MA, Halfter W, Cole GJ (1995) Analysis of proteoglycan expression in developing chicken brain: characterization of a heparan sulfate proteoglycan that interacts with the neural cell adhesion molecule. J Neurosci Res 41:49-64PubMedGoogle Scholar
  113. 113.
    Storms SD, Kim AC, Tran BH, Cole GJ, Murray BA (1996) NCAM-mediated adhesion of transfected cells to agrin. Cell Adhes Commun 3:497-509PubMedGoogle Scholar
  114. 114.
    Storms SD, Anvekar VM, Adams LD, Murray BA (1996) Heterophilic NCAM-mediated cell adhesion to proteoglycans from chick embryonic brain membranes. Exp Cell Res 223:385-394PubMedGoogle Scholar
  115. 115.
    Storms SD, Rutishauser U (1998) A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans. J Biol Chem 273:27124-27129PubMedGoogle Scholar
  116. 116.
    Prag S, Lepekhin EA, Kolkova K, Hartmann-Petersen R, Kawa A, Walmod PS, Belman V, Gallagher HC, Berezin V, Bock E, Pedersen N (2002) NCAM regulates cell motility. J Cell Sci 115:283-292PubMedGoogle Scholar
  117. 117.
    Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372-9382PubMedGoogle Scholar
  118. 118.
    Kasper C, Rasmussen H, Kastrup JS, Ikemizu S, Jones EY, Berezin V, Bock E, Larsen IK (2000) Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 7:389-393PubMedGoogle Scholar
  119. 119.
    Cole GJ, Loewy A, Glaser L (1986) Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 320:445-447PubMedGoogle Scholar
  120. 120.
    Doherty P, Barton CH, Dickson G, Seaton P, Rowett LH, Moore SE, Gower HJ, Walsh FS (1989) Neuronal process outgrowth of human sensory neurons on monolayers of cells transfected with cDNAs for five human N-CAM isoforms. J Cell Biol 109:789-798PubMedGoogle Scholar
  121. 121.
    Doherty P, Fruns M, Seaton P, Dickson G, Barton CH, Sears TA, Walsh FS (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 343:464-466PubMedGoogle Scholar
  122. 122.
    Soroka V, Kolkova K, Kastrup JS, Diederichs K, Breed J, Kiselyov VV, Poulsen FM, Larsen IK, Welte W, Berezin V, Bock E, Kasper C (2003) Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11:1291-1301PubMedGoogle Scholar
  123. 123.
    Kroger S, Schroder JE (2002) Agrin in the developing CNS: new roles for a synapse organizer. News Physiol Sci 17:207-212PubMedGoogle Scholar
  124. 124.
    Ngo ST, Noakes PG, Phillips WD (2007) Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol 39:863-867PubMedGoogle Scholar
  125. 125.
    Cotman SL, Halfter W, Cole GJ (1999) Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 249:54-64PubMedGoogle Scholar
  126. 126.
    Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4:295-308PubMedGoogle Scholar
  127. 127.
    Bowe MA, Deyst KA, Leszyk JD, Fallon JR (1994) Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12:1173-1180PubMedGoogle Scholar
  128. 128.
    Bixby JL, Baerwald-De la Torre K, Wang C, Rathjen FG, Ruegg MA (2002) A neuronal inhibitory domain in the N-terminal half of agrin. J Neurobiol 50:164-179PubMedGoogle Scholar
  129. 129.
    Martin PT, Sanes JR (1997) Integrins mediate adhesion to agrin and modulate agrin signaling. Development 124:3909-3917PubMedGoogle Scholar
  130. 130.
    Aricescu AR, McKinnell IW, Halfter W, Stoker AW (2002) Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase σ. Mol Cell Biol 22:1881-1892PubMedGoogle Scholar
  131. 131.
    Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA (1997) Agrin binds to the nerve-muscle basal lamina via laminin. J Cell Biol 137:671-683PubMedGoogle Scholar
  132. 132.
    Daggett DF, Cohen MW, Stone D, Nikolics K, Rauvala H, Peng HB (1996) The role of an agrin-growth factor interaction in ACh receptor clustering. Mol Cell Neurosci 8:272-285PubMedGoogle Scholar
  133. 133.
    Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR (1998) Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 141:715-726PubMedGoogle Scholar
  134. 134.
    Cotman SL, Halfter W, Cole GJ (2000) Agrin binds to β-amyloid (Aβ), accelerates Aβ fibril formation, and is localized to Aβ deposits in Alzheimer’s disease brain. Mol Cell Neurosci 15:183-198PubMedGoogle Scholar
  135. 135.
    Cole GJ, Burg M (1989) Characterization of a heparan sulfate proteoglycan that copurifies with the neural cell adhesion molecule. Exp Cell Res 182:44-60PubMedGoogle Scholar
  136. 136.
    Marneros AG, Olsen BR (2001) The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol 20:337-345PubMedGoogle Scholar
  137. 137.
    Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273:25404-25412PubMedGoogle Scholar
  138. 138.
    Sasaki T, Hohenester E, Timpl R (2002) Structure and function of collagen-derived endostatin inhibitors of angiogenesis. IUBMB Life 53:77-84PubMedGoogle Scholar
  139. 139.
    Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R (1998) Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 17:4249-4256PubMedGoogle Scholar
  140. 140.
    Sasaki T, Larsson H, Tisi D, Claesson-Welsh L, Hohenester E, Timpl R (2000) Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J Mol Biol 301:1179-1190PubMedGoogle Scholar
  141. 141.
    Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, Chan B, Dhanabal M, Hanai JI, Venkataraman G, Shriver Z, Keiser N, Kalluri R, Zeng H, Mukhopadhyay D, Chen RL, Lander AD, Hagihara K, Yamaguchi Y, Sasisekharan R, Cantley L, Sukhatme VP (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7:811-822PubMedGoogle Scholar
  142. 142.
    Rehn M, Veikkola T, Kukk-Valdre E, Nakamura H, Ilmonen M, Lombardo C, Pihlajaniemi T, Alitalo K, Vuori K (2001) Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 98:1024-1029PubMedGoogle Scholar
  143. 143.
    Dong S, Cole GJ, Halfter W (2003) Expression of collagen XVIII and localization of its glycosaminoglycan attachment sites. J Biol Chem 278:1700-1707PubMedGoogle Scholar
  144. 144.
    Grumet M, Flaccus A, Margolis RU (1993) Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 120:815-824PubMedGoogle Scholar
  145. 145.
    Friedlander DR, Milev P, Karthikeyan L, Margolis RK, Margolis RU, Grumet M (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669-680PubMedGoogle Scholar
  146. 146.
    Milev P, Friedlander DR, Sakurai T, Karthikeyan L, Flad M, Margolis RK, Grumet M, Margolis RU (1994) Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J Cell Biol 127:1703-1715PubMedGoogle Scholar
  147. 147.
    Milev P, Meyer-Puttlitz B, Margolis RK, Margolis RU (1995) Complex-type asparagine-linked oligosaccharides on phosphacan and protein-tyrosine phosphatase-ζ/β mediate their binding to neural cell adhesion molecules and tenascin. J Biol Chem 270:24650-24653PubMedGoogle Scholar
  148. 148.
    Retzler C, Gohring W, Rauch U (1996) Analysis of neurocan structures interacting with the neural cell adhesion molecule N-CAM. J Biol Chem 271:27304-27310PubMedGoogle Scholar
  149. 149.
    Probstmeier R, Kuhn K, Schachner M (1989) Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J Neurochem 53:1794-1801PubMedGoogle Scholar
  150. 150.
    Kallapur SG, Akeson RA (1992) The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 33:538-548PubMedGoogle Scholar
  151. 151.
    Bovolenta P, Fernaud-Espinosa I (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61:113-132PubMedGoogle Scholar
  152. 152.
    Retzler C, Wiedemann H, Kulbe G, Rauch U (1996) Structural and electron microscopic analysis of neurocan and recombinant neurocan fragments. J Biol Chem 271:17107-17113PubMedGoogle Scholar
  153. 153.
    Grumet M, Milev P, Sakurai T, Karthikeyan L, Bourdon M, Margolis RK, Margolis RU (1994) Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue. J Biol Chem 269:12142-12146PubMedGoogle Scholar
  154. 154.
    Milev P, Chiba A, Haring M, Rauvala H, Schachner M, Ranscht B, Margolis RK, Margolis RU (1998) High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-ζ/β with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem 273:6998-7005PubMedGoogle Scholar
  155. 155.
    Feng K, Arnold-Ammer I, Rauch U (2000) Neurocan is a heparin binding proteoglycan. Biochem Biophys Res Commun 272:449-455PubMedGoogle Scholar
  156. 156.
    Li H, Leung TC, Hoffman S, Balsamo J, Lilien J (2000) Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J Cell Biol 149:1275-1288PubMedGoogle Scholar
  157. 157.
    Milev P, Monnerie H, Popp S, Margolis RK, Margolis RU (1998) The core protein of the chondroitin sulfate proteoglycan phosphacan is a high-affinity ligand of fibroblast growth factor-2 and potentiates its mitogenic activity. J Biol Chem 273:21439-21442PubMedGoogle Scholar
  158. 158.
    Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ/RPTPβ binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 271:21446-21452PubMedGoogle Scholar
  159. 159.
    Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD, Grumet M, Schlessinger J (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase β is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251-260PubMedGoogle Scholar
  160. 160.
    Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M (1999) A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine: involvement of arginine 78 of midkine in the high affinity binding to PTPζ. J Biol Chem 274:12474-12479PubMedGoogle Scholar
  161. 161.
    Rauch U, Feng K, Zhou XH (2001) Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol Life Sci 58:1842-1856PubMedGoogle Scholar
  162. 162.
    Viapiano MS, Matthews RT (2006) From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med 12:488-496PubMedGoogle Scholar
  163. 163.
    Barnea G, Grumet M, Milev P, Silvennoinen O, Levy JB, Sap J, Schlessinger J (1994) Receptor tyrosine phosphatase β is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J Biol Chem 269:14349-14352PubMedGoogle Scholar
  164. 164.
    Martini R, Schachner M (1986) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol 103:2439-2448PubMedGoogle Scholar
  165. 165.
    Martini R, Schachner M (1988) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol 106:1735-1746PubMedGoogle Scholar
  166. 166.
    Probstmeier R, Fahrig T, Spiess E, Schachner M (1992) Interactions of the neural cell adhesion molecule and the myelin-associated glycoprotein with collagen type I: involvement in fibrillogenesis. J Cell Biol 116:1063-1070PubMedGoogle Scholar
  167. 167.
    Sheard P, Paul A, Duxson M (2002) Intramuscular force transmission. Adv Exp Med Biol 508:495-499PubMedGoogle Scholar
  168. 168.
    Luckenbill-Edds L (1997) Laminin and the mechanism of neuronal outgrowth. Brain Res Brain Res Rev 23:1-27PubMedGoogle Scholar
  169. 169.
    Lafon M (2005) Rabies virus receptors. J Neurovirol 11:82-87PubMedGoogle Scholar
  170. 170.
    Finke S, Conzelmann KK (2005) Replication strategies of rabies virus. Virus Res 111:120-131PubMedGoogle Scholar
  171. 171.
    World Health Organization (2006) Rabies (WHO Fact Sheet No. 99). World Health Organization, Geneva. (accessed 29 Feb 2008)
  172. 172.
    Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181-7190PubMedGoogle Scholar
  173. 173.
    Hotta K, Motoi Y, Okutani A, Kaku Y, Noguchi A, Inoue S, Yamada A (2007) Role of GPI-anchored NCAM-120 in rabies virus infection. Microbes Infect 9:167-174PubMedGoogle Scholar
  174. 174.
    Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320-1323PubMedGoogle Scholar
  175. 175.
    Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280:1618-1620PubMedGoogle Scholar
  176. 176.
    Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246:179-189PubMedGoogle Scholar
  177. 177.
    Koike S, Ise I, Sato Y, Yonekawa H, Gotoh O, Nomoto A (1992) A second gene for the African green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminal immunoglobulin-like domain. J Virol 66:7059-7066PubMedGoogle Scholar
  178. 178.
    Wang J (2002) Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends Biochem Sci 27:122-126PubMedGoogle Scholar
  179. 179.
    DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15-37PubMedGoogle Scholar
  180. 180.
    Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537-540PubMedGoogle Scholar
  181. 181.
    Fujimoto I, Bruses JL, Rutishauser U (2001) Regulation of cell adhesion by polysialic acid: effects on cadherin, immunoglobulin cell adhesion molecule, and integrin function and independence from neural cell adhesion molecule binding or signaling activity. J Biol Chem 276:31745-31751PubMedGoogle Scholar
  182. 182.
    Johnson CP, Fujimoto I, Rutishauser U, Leckband DE (2005) Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem 280:137-145PubMedGoogle Scholar
  183. 183.
    Ingber DE (2003) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157-1173PubMedGoogle Scholar
  184. 184.
    Ingber DE (2003) Tensegrity II: how structural networks influence cellular information processing networks. J Cell Sci 116:1397-1408PubMedGoogle Scholar
  185. 185.
    Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50:255-266PubMedGoogle Scholar
  186. 186.
    Pollerberg GE, Burridge K, Krebs KE, Goodman SR, Schachner M (1987) The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res 250:227-236PubMedGoogle Scholar
  187. 187.
    Minana R, Duran JM, Tomas M, Renau-Piqueras J, Guerri C (2001) Neural cell adhesion molecule is endocytosed via a clathrin-dependent pathway. Eur J Neurosci 13:749-756PubMedGoogle Scholar
  188. 188.
    Diestel S, Schaefer D, Cremer H, Schmitz B (2007) NCAM is ubiquitylated, endocytosed and recycled in neurons. J Cell Sci 120:4035-4049PubMedGoogle Scholar
  189. 189.
    Foley AG, Hartz BP, Gallagher HC, Ronn LC, Berezin V, Bock E, Regan CM (2000) A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem 74:2607-2613PubMedGoogle Scholar
  190. 190.
    Garwood J, Heck N, Reichardt F, Faissner A (2003) Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-β interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem 278:24164-24173PubMedGoogle Scholar
  191. 191.
    Rader C, Stoeckli ET, Ziegler U, Osterwalder T, Kunz B, Sonderegger P (1993) Cell-cell adhesion by homophilic interaction of the neuronal recognition molecule axonin-1. Eur J Biochem 215:133-141PubMedGoogle Scholar
  192. 192.
    Miura M, Asou H, Kobayashi M, Uyemura K (1992) Functional expression of a full-length cDNA coding for rat neural cell adhesion molecule L1 mediates homophilic intercellular adhesion and migration of cerebellar neurons. J Biol Chem 267:10752-10758PubMedGoogle Scholar
  193. 193.
    Mauro VP, Krushel LA, Cunningham BA, Edelman GM (1992) Homophilic and heterophilic binding activities of Nr-CAM, a nervous system cell adhesion molecule. J Cell Biol 119:191-202PubMedGoogle Scholar
  194. 194.
    Pruss T, Niere M, Kranz EU, Volkmer H (2004) Homophilic interactions of chick neurofascin in trans are important for neurite induction. Eur J Neurosci 20:3184-3188PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Janne Nielsen
  • Nikolaj Kulahin
  • Peter S. Walmod
    • 1
    Email author
  1. 1.Protein LaboratoryPanum InstituteCopenhagen NDenmark

Personalised recommendations