NCAM in Long-Term Potentiation and Learning

  • Barbara P. HartzEmail author
  • Lars Christian B. Rønn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


The neural cell adhesion molecule (NCAM) is important in regulating neuronal development and plasticity by modulating cell adhesion and signal transduction. Studies using NCAM antibodies have demonstrated a role of NCAM in hippocampal long-term potentiation and in animal learning models. These findings have been supported by the observation that NCAM-deficient mice show altered LTP as well as learning deficits. A particular carbohydrate modification of NCAM, polysialic acid (PSA), has been shown to be important for synaptic plasticity, as demonstrated by impaired LTP and learning in mice deficient in polysialyltransferase enzymes necessary for adding PSA to the NCAM protein as well as in wildtype mice after enzymatic removal of PSA. It is suggested that NCAM and its PSA moiety are involved in synaptic remodeling in LTP and learning, possibly by modulating signal transduction pathways as well as by mediating and permitting adhesive changes in an activity-dependent manner.


NCAM LTP Learning Memory Synaptic plasticity 





Alzheimer’s Disease


Brain-derived neurotrophic factor


cell adhesion molecule


Ca2+/calmodulin-dependent protein kinase II


Electron microscopy


Endoneuraminidase N


Excitatory postsynaptic potential


Fibroblast growth factor receptor


Glutamate receptor 2/3






Long-term potentiation


Neural cell adhesion molecule


Protein kinase C


Polysialic acid


Postsynaptic density




  1. 1.
    Jørgensen OS, Bock E (1974) Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23:879-880PubMedCrossRefGoogle Scholar
  2. 2.
    Noble M, Albrechtsen M, Møller C, Lyles J, Bock E, Goridis C, Rutishauser U (1985) Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature 316:725-728PubMedCrossRefGoogle Scholar
  3. 3.
    Rutishauser U, Hoffman S, Edelman GM (1982) Binding properties of a cell adhesion molecule from neural tissue. Proc Natl Acad Sci USA 79:685-689PubMedCrossRefGoogle Scholar
  4. 4.
    Hirn M, Pierres M, Deagostini-Bazin H, Hirsch M, Goridis C (1981) Monoclonal antibody against cell surface glycoprotein of neurons. Brain Res 214:433-439PubMedCrossRefGoogle Scholar
  5. 5.
    Sadoul R, Hirn M, Deagostini-Bazin H, Rougon G, Goridis C (1983) Adult and embryonic mouse neural cell adhesion molecules have different binding properties. Nature 304:347-349PubMedCrossRefGoogle Scholar
  6. 6.
    Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2008) NCAM-induced intracellular signaling revisited. J Neurosci Res 86:727-743PubMedCrossRefGoogle Scholar
  7. 7.
    Kiselyov VV, Soroka V, Berezin V, Bock E (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169-1179PubMedCrossRefGoogle Scholar
  8. 8.
    Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19-26PubMedCrossRefGoogle Scholar
  9. 9.
    Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26-35PubMedCrossRefGoogle Scholar
  10. 10.
    Hildebrandt H, Muhlenhoff M, Weinhold B, Gerardy-Schahn R (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 103(Suppl 1):56-64PubMedCrossRefGoogle Scholar
  11. 11.
    Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101-118PubMedCrossRefGoogle Scholar
  12. 12.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129-164PubMedCrossRefGoogle Scholar
  13. 13.
    Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal lon-term potentiation. J Neurosci Res 45:143-152PubMedCrossRefGoogle Scholar
  14. 14.
    Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron. 17:413-422PubMedCrossRefGoogle Scholar
  15. 15.
    Lømo T (2003) The discovery of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:617-620PubMedCrossRefGoogle Scholar
  16. 16.
    Raymond CR (2007) LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends Neurosci 30:167-175PubMedCrossRefGoogle Scholar
  17. 17.
    Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24-40PubMedCrossRefGoogle Scholar
  18. 18.
    Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006(356):re11PubMedCrossRefGoogle Scholar
  19. 19.
    Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL (2007) Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology 52:1-11PubMedCrossRefGoogle Scholar
  20. 20.
    Lüthi A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777-779CrossRefGoogle Scholar
  21. 21.
    Rønn LC, Bock E, Linnemann D, Jahnsen H (1995) NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res 677:145-151PubMedCrossRefGoogle Scholar
  22. 22.
    Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993) The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J Cell Biol 121(6):1409-1421PubMedCrossRefGoogle Scholar
  23. 23.
    Doyle E, Nolan PM, Bell R, Regan CM (1992) Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem 59(4):1570-1573PubMedCrossRefGoogle Scholar
  24. 24.
    Scholey AB, Rose SPR, Zamani MR, Bock E, Schachner M (1993) A role for the neural cell adhesion molecule (NCAM) in a late, consolidating phase of glycoprotein synthesis 6 hours following passive avoidance training of the young chick. Neuroscience 55:499-509PubMedCrossRefGoogle Scholar
  25. 25.
    Roullet P, Mileusnic R, Rose SP, Sara SJ (1997) Neural cell adhesion molecules play a role in rat memory formation in appetitive as well as aversive tasks. NeuroReport 8:1907-1911PubMedCrossRefGoogle Scholar
  26. 26.
    Mileusnic R, Rose SP, Lancashire C, Bullock S (1995) Characterisation of antibodies specific for chick brain neural cell adhesion molecules which cause amnesia for a passive avoidance task. J Neurochem 64:2598-2606PubMedCrossRefGoogle Scholar
  27. 27.
    Mileusnic R, Lancashire C, Rose SP (1999) Sequence-specific impairment of memory formation by NCAM antisense oligonucleotides. Learn Mem 6:120-127PubMedGoogle Scholar
  28. 28.
    Arami S, Jucker M, Schachner M, Welzl H (1996) The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats. Behav Brain Res 81:81-87PubMedCrossRefGoogle Scholar
  29. 29.
    Rønn LC, Olsen M, Østergaard S, Kiselyov V, Berezin V, Mortensen MT, Lerche MH, Jensen PH, Soroka V, Saffell JL, Doherty P, Poulsen FM, Bock E, Holm A, Saffells JL (1999) Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides. Nat Biotechnol 17:1000-1005PubMedCrossRefGoogle Scholar
  30. 30.
    Cambon K, Venero C, Berezin V, Bock E, Sandi C (2003) Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience 122:183-191PubMedCrossRefGoogle Scholar
  31. 31.
    Foley AG, Hartz BP, Gallagher HC, Rønn LC, Berezin V, Bock E, Regan CM (2000) A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem 74:2607-2613PubMedCrossRefGoogle Scholar
  32. 32.
    Hartz BP, Sohoel A, Berezin V, Bock E, Scheel-Kruger J (2003) A synthetic peptide ligand of NCAM affects exploratory behavior and memory in rodents. Pharmacol Biochem Behav 75:861-867PubMedCrossRefGoogle Scholar
  33. 33.
    Venero C, Herrero AI, Touyarot K, Cambon K, Lopez-Fernandez MA, Berezin V, Bock E, Sandi C (2006) Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory. Eur J NeuroSci 23:1585-1595PubMedCrossRefGoogle Scholar
  34. 34.
    Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197-4204PubMedCrossRefGoogle Scholar
  35. 35.
    Rizhova L, Klementiev B, Cambon K, Venero C, Sandi C, Vershinina E, Vaudano E, Berezin V, Bock E (2007) Effects of P2, a peptide derived from a homophilic binding site in the neural cell adhesion molecule on learning and memory in rats. Neuroscience 149:931-942PubMedCrossRefGoogle Scholar
  36. 36.
    Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691-701PubMedCrossRefGoogle Scholar
  37. 37.
    Secher T, Novitskaia V, Berezin V, Bock E, Glenthoj B, Klementiev B (2006) A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention. Neuroscience 141:1289-1299PubMedCrossRefGoogle Scholar
  38. 38.
    Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145:209-224PubMedCrossRefGoogle Scholar
  39. 39.
    Li S, Kolkova K, Rudenko O, Soroka V, Poulsen FM, Bock E, Berezin V (2005) Triple effect of mimetic peptides interfering with neural cell adhesion molecule homophilic cis interactions. Biochemistry 44:5034-5040PubMedCrossRefGoogle Scholar
  40. 40.
    Merino JJ, Cordero MI, Sandi C (2000) Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur J NeuroSci 12:3283-3290PubMedCrossRefGoogle Scholar
  41. 41.
    Fazeli MS, Breen K, Errington ML, Bliss TVP (1994) Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci Lett 169:77-80PubMedCrossRefGoogle Scholar
  42. 42.
    Hoffman KB, Larson J, Bahr BA, Lynch G (1998) Activation of NMDA receptors stimulates extracellular proteolysis of cell adhesion molecules in hippocampus. Brain Res 811:152-155PubMedCrossRefGoogle Scholar
  43. 43.
    Holst BD, Vanderklish PW, Krushel LA, Zhou W, Langdon RB, McWhirter JR, Edelman GM, Crossin KL (1998) Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. Proc Natl Acad Sci USA 95:2597-2602PubMedCrossRefGoogle Scholar
  44. 44.
    Schuster T, Krug M, Hassan H, Schachner M (1998) Increase in proportion of hippocampal spine synapses expressing neural cell adhesion molecule NCAM180 following long-term potentiation. J Neurobiol 37:359-372PubMedCrossRefGoogle Scholar
  45. 45.
    Fux CM, Krug M, Dityatev A, Schuster T, Schachner M (2003) NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 24:939-950PubMedCrossRefGoogle Scholar
  46. 46.
    Sytnyk V, Leshchyns’ka I, Delling M, Dityateva G, Dityatev A, Schachner M (2002) Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol 159:649-661PubMedCrossRefGoogle Scholar
  47. 47.
    Doyle E, Nolan PM, Bell R, Regan CM (1992) Hippocampal NCAM180 transiently increases sialylation during the aquisition and consolidation of a passive avoidance response in the adult rat. J Neurosci Res 31:513-523PubMedCrossRefGoogle Scholar
  48. 48.
    Fox GB, O’Connell AW, Murphy KJ, Regan CM (1995) Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated cells in the adult rat hippocampus. J Neurochem 65:2796-2799PubMedCrossRefGoogle Scholar
  49. 49.
    Murphy KJ, O’Connell AW, Regan CM (1996) Repetitive and transient increases in hippocampal neural cell adhesion molecule polysialylation state following multitrial spatial training. J Neurochem 67:1268-1274PubMedCrossRefGoogle Scholar
  50. 50.
    Lopez-Fernandez MA, Montaron MF, Varea E, Rougon G, Venero C, Abrous DN, Sandi C (2007) Upregulation of polysialylated neural cell adhesion molecule in the dorsal hippocampus after contextual fear conditioning is involved in long-term memory formation. J Neurosci 27:4552-4561PubMedCrossRefGoogle Scholar
  51. 51.
    Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A (2006) Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci 26:10888-109898PubMedCrossRefGoogle Scholar
  52. 52.
    Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144:788-796PubMedCrossRefGoogle Scholar
  53. 53.
    Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234-5244PubMedGoogle Scholar
  54. 54.
    Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24(42):9372-9382PubMedCrossRefGoogle Scholar
  55. 55.
    Buchs PA, Stoppini L, Parducz A, Siklos L, Muller D (1994) A new cytochemical method for the ultrastructural localization of calcium in the central nervous system. J Neurosci Methods 54:83-93PubMedCrossRefGoogle Scholar
  56. 56.
    Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421-425PubMedCrossRefGoogle Scholar
  57. 57.
    Hammond MS, Sims C, Parameshwaran K, Suppiramaniam V, Schachner M, Dityatev A (2006) Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-D-aspartate receptors and prevents glutamate-induced cell death. J Biol Chem 281:34859-34869PubMedCrossRefGoogle Scholar
  58. 58.
    Kiss JZ, Wang C, Olive S, Rougon G, Lang J, Baetens D, Harry D (1994) Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. EMBO J 13:5284-5292PubMedGoogle Scholar
  59. 59.
    Singh J, Kaur G (2007) Transcriptional regulation of polysialylated neural cell adhesion molecule expression by NMDA receptor activation in retinoic acid-differentiated SH-SY5Y neuroblastoma cultures. Brain Res 1154:8-21PubMedCrossRefGoogle Scholar
  60. 60.
    Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S, Baerhels D, Rajewsky K, Wille W (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-459PubMedCrossRefGoogle Scholar
  61. 61.
    Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323-335PubMedCrossRefGoogle Scholar
  62. 62.
    Bekkers JM (1993) Enhancement by histamine of NMDA-mediated synaptic transmission in the hippocampus. Science 261:104-106PubMedCrossRefGoogle Scholar
  63. 63.
    Stork O, Welzl H, Wolfer D, Schuster T, Mantei N, Stork S, Hoyer D, Lipp H, Obata K, Schachner M (2000) Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur J NeuroSci 12:3291-3306PubMedCrossRefGoogle Scholar
  64. 64.
    Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413-422PubMedCrossRefGoogle Scholar
  65. 65.
    Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24:1565-1577PubMedCrossRefGoogle Scholar
  66. 66.
    Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315-4320PubMedCrossRefGoogle Scholar
  67. 67.
    Dityatev A, Dityateva G, Schachner M (2000) Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:207-217PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.NeuroSearch A/SBallerupDenmark

Personalised recommendations