Role of NCAM in Spine Dynamics and Synaptogenesis

  • D. MullerEmail author
  • P. Mendez
  • M. DeRoo
  • P. Klauser
  • S. Steen
  • L. Poglia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


Increasing evidence indicates that adhesion molecules are critically involved in the regulation of mechanisms of synaptic plasticity including synapse formation, and also synaptic remodeling associated with changes in synaptic strength. Among these, the Neural Cell Adhesion Molecule (NCAM) and its polysialylated form PSA-NCAM are important candidates. Here, we review recent results that point to a possible role of these two molecules in regulating the structural properties of excitatory synapses - namely, the composition and stability of the postsynaptic density - thereby accounting for their contribution to mechanisms of synaptogenesis and activity-dependent synaptic plasticity.


Cell-cell interactions Adhesion molecules Synaptic plasticity Synapse formation PSA-NCAM 


  1. 1.
    Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788-794PubMedCrossRefGoogle Scholar
  2. 2.
    Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279-291PubMedCrossRefGoogle Scholar
  3. 3.
    Zuo Y, Lin A, Chang P, Gan WB (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181-189PubMedCrossRefGoogle Scholar
  4. 4.
    Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812-816PubMedCrossRefGoogle Scholar
  5. 5.
    Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH (2007) Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27:4101-4109PubMedCrossRefGoogle Scholar
  6. 6.
    Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979-983PubMedCrossRefGoogle Scholar
  7. 7.
    Laumonnier F, Cuthbert PC, Grant SG (2007) The role of neuronal complexes in human x-linked brain diseases. Am J Hum Genet 80:205-220PubMedCrossRefGoogle Scholar
  8. 8.
    Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8:206-220PubMedCrossRefGoogle Scholar
  9. 9.
    Yamada S, Nelson WJ (2007) Synapses: sites of cell recognition, adhesion, and functional specification. Annu Rev Biochem 76:267-294PubMedCrossRefGoogle Scholar
  10. 10.
    Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43-52PubMedCrossRefGoogle Scholar
  11. 11.
    Gerrow K, El-Husseini A (2006) Cell adhesion molecules at the synapse. Front Biosci 11:2400-2419PubMedCrossRefGoogle Scholar
  12. 12.
    Akins MR, Biederer T (2006) Cell-cell interactions in synaptogenesis. Curr Opin Neurobiol 16:83-89PubMedCrossRefGoogle Scholar
  13. 13.
    Garner CC, Waites CL, Ziv NE (2006) Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 326:249-262PubMedCrossRefGoogle Scholar
  14. 14.
    Prange O, Murphy TH (2001) Modular transport of postsynaptic density-95 clusters and association with stable spine precursors during early development of cortical neurons. J Neurosci 21:9325-9333PubMedGoogle Scholar
  15. 15.
    Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A (2006) A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49:547-562PubMedCrossRefGoogle Scholar
  16. 16.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103-126PubMedCrossRefGoogle Scholar
  17. 17.
    Gray NW, Weimer RM, Bureau I, Svoboda K (2006) Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 4:e370PubMedCrossRefGoogle Scholar
  18. 18.
    Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91-102PubMedCrossRefGoogle Scholar
  19. 19.
    Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66-70PubMedCrossRefGoogle Scholar
  20. 20.
    Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 23:10645-10649PubMedGoogle Scholar
  21. 21.
    De Roo M, Klauser P, Mendez P, Poglia L, Muller D (2008) Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. Cereb Cortex 18:151-161PubMedCrossRefGoogle Scholar
  22. 22.
    Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9:1117-1124PubMedCrossRefGoogle Scholar
  23. 23.
    McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425-450PubMedCrossRefGoogle Scholar
  24. 24.
    Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104:4176-4181PubMedCrossRefGoogle Scholar
  25. 25.
    Tang L, Hung CP, Schuman EM (1998) A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20:1165-1175PubMedCrossRefGoogle Scholar
  26. 26.
    Okamura K, Tanaka H, Yagita Y, Saeki Y, Taguchi A, Hiraoka Y, Zeng LH, Colman DR, Miki N (2004) Cadherin activity is required for activity-induced spine remodeling. J Cell Biol 167:961-972PubMedCrossRefGoogle Scholar
  27. 27.
    Cremer H, Lange R, Christoph A, Plomann M, Vopper G, Roes J, Brown R, Baldwin S, Kraemer P, Scheff S et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455-459PubMedCrossRefGoogle Scholar
  28. 28.
    Luthi A, Laurent JP, Figurov A, Muller D, Schachner M (1994) Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372:777-779CrossRefGoogle Scholar
  29. 29.
    Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413-422PubMedCrossRefGoogle Scholar
  30. 30.
    Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45:143-152PubMedCrossRefGoogle Scholar
  31. 31.
    Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24:1565-1577PubMedCrossRefGoogle Scholar
  32. 32.
    Eckhardt M, Bukalo O, Chazal G, Wang L, Goridis C, Schachner M, Gerardy-Schahn R, Cremer H, Dityatev A (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234-5244PubMedGoogle Scholar
  33. 33.
    Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144:788-796PubMedCrossRefGoogle Scholar
  34. 34.
    Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A (2006) In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23:2255-2264PubMedCrossRefGoogle Scholar
  35. 35.
    Rutishauser U, Acheson A, Hall AK, Mann DM, Sunshine J (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240:53-57PubMedCrossRefGoogle Scholar
  36. 36.
    Geinisman Y (1993) Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus 3:417-433PubMedCrossRefGoogle Scholar
  37. 37.
    Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci USA 93:8040-8045PubMedCrossRefGoogle Scholar
  38. 38.
    Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, Muller D (2001) Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci 21:6245-6251PubMedGoogle Scholar
  39. 39.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761-766PubMedCrossRefGoogle Scholar
  40. 40.
    Kiss JZ, Wang C, Olive S, Rougon G, Lang J, Baetens D, Harry D, Pralong WF (1994) Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. EMBO J 13:5284-5292PubMedGoogle Scholar
  41. 41.
    Kasper C, Rasmussen H, Kastrup JS, Ikemizu S, Jones EY, Berezin V, Bock E, Larsen IK (2000) Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 7:389-393PubMedCrossRefGoogle Scholar
  42. 42.
    Hinsby AM, Berezin V, Bock E (2004) Molecular mechanisms of NCAM function. Front Biosci 9:2227-2244PubMedCrossRefGoogle Scholar
  43. 43.
    Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2007) NCAM-induced intracellular signaling revisited. J Neurosci Res 86(4):727-743CrossRefGoogle Scholar
  44. 44.
    Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101-118PubMedCrossRefGoogle Scholar
  45. 45.
    Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26-35PubMedCrossRefGoogle Scholar
  46. 46.
    Williams EJ, Walsh FS, Doherty P (2003) The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 160:481-486PubMedCrossRefGoogle Scholar
  47. 47.
    Kiselyov VV, Soroka V, Berezin V, Bock E (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169-1179PubMedCrossRefGoogle Scholar
  48. 48.
    Kiryushko D, Korshunova I, Berezin V, Bock E (2006) Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 17:2278-2286PubMedCrossRefGoogle Scholar
  49. 49.
    Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315-4320PubMedCrossRefGoogle Scholar
  50. 50.
    Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134:1181-1190PubMedCrossRefGoogle Scholar
  51. 51.
    Lu Y, Christian K, Lu B (2007) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89(3):312-23PubMedCrossRefGoogle Scholar
  52. 52.
    Sytnyk V, Leshchyns’ka I, Delling M, Dityateva G, Dityatev A, Schachner M (2002) Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol 159:649-661PubMedCrossRefGoogle Scholar
  53. 53.
    Sytnyk V, Leshchyns’ka I, Dityatev A, Schachner M (2004) Trans-Golgi network delivery of synaptic proteins in synaptogenesis. J Cell Sci 117:381-388PubMedCrossRefGoogle Scholar
  54. 54.
    Sytnyk V, Leshchyns’ka I, Nikonenko AG, Schachner M (2006) NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. J Cell Biol 174:1071-1085PubMedCrossRefGoogle Scholar
  55. 55.
    Dityatev A, Dityateva G, Schachner M (2000) Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:207-217PubMedCrossRefGoogle Scholar
  56. 56.
    Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372-9382PubMedCrossRefGoogle Scholar
  57. 57.
    Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197-4204PubMedCrossRefGoogle Scholar
  58. 58.
    Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Belanger MC, Wu CZ, Rutishauser U, Maffei L, Huang ZJ (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569-1577PubMedCrossRefGoogle Scholar
  59. 59.
    De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49:861-875PubMedCrossRefGoogle Scholar
  60. 60.
    Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549-551PubMedCrossRefGoogle Scholar
  61. 61.
    De Paola V, Arber S, Caroni P (2003) AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat Neurosci 6:491-500PubMedGoogle Scholar
  62. 62.
    Zuber B, Nikonenko I, Klauser P, Muller D, Dubochet J (2005) The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc Natl Acad Sci USA 102:19192-19197PubMedCrossRefGoogle Scholar
  63. 63.
    Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360-368PubMedCrossRefGoogle Scholar
  64. 64.
    Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450:1195-1200PubMedCrossRefGoogle Scholar
  65. 65.
    Berezin V, Bock E (2004) NCAM mimetic peptides: pharmacological and therapeutic potential. J Mol Neurosci 22:33-39PubMedCrossRefGoogle Scholar
  66. 66.
    Skibo GG, Lushnikova IV, Voronin KY, Dmitrieva O, Novikova T, Klementiev B, Vaudano E, Berezin VA, Bock E (2005) A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J Neurosci 22:1589-1596PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. Muller
    • 1
    Email author
  • P. Mendez
  • M. DeRoo
  • P. Klauser
  • S. Steen
  • L. Poglia
  1. 1.Department of NeuroscienceUniversity of Geneva Medical CenterGeneva 4Switzerland

Personalised recommendations