Advertisement

The Neural Cell Adhesion Molecule and Epidermal Growth Factor Receptor: Signaling Crosstalk

  • Gro Klitgaard PovlsenEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)

Abstract

The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. In vitro, NCAM stimulates neurite outgrowth and neuronal survival and inhibits the proliferation of astrocytes and neuronal progenitors. NCAM exerts these functions by mediating cell-cell and cell-matrix adhesions and by activating intracellular signaling cascades, in which activation of the fibroblast growth factor receptor plays a prominent role. Recent studies in Drosophila suggest that NCAM can also regulate the activity of the Drosophila epidermal growth factor receptor; however, until recently, the putative interaction between NCAM and the epidermal growth factor (EGF) receptor in mammalian cells has not been investigated. Interestingly, the first study addressing this interaction in mammalian cells points to functional crosstalk between NCAM and the EGF receptor in mammals, which differs strikingly from the functional interplay observed between the Drosophila homologs of these molecules.

Keywords

Neural cell adhesion molecule Epidermal growth factor receptor Neurite outgrowth Drosophila Fasciclin II Receptor downregulation 

References

  1. 1.
    Jorgensen OS, Bock E (1974) Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23:879-880PubMedCrossRefGoogle Scholar
  2. 2.
    Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140-154PubMedCrossRefGoogle Scholar
  3. 3.
    Kiss JZ, Troncoso E, Djebbara Z, Vutskits L, Muller D (2001) The role of neural cell adhesion molecules in plasticity and repair. Brain Res Brain Res Rev 36:175-184PubMedCrossRefGoogle Scholar
  4. 4.
    Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118-132PubMedCrossRefGoogle Scholar
  5. 5.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129-164PubMedCrossRefGoogle Scholar
  6. 6.
    Brose N (1999) Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften 86:516-524PubMedCrossRefGoogle Scholar
  7. 7.
    Martin PT (2003) Glycobiology of the neuromuscular junction. J Neurocytol 32:915-929PubMedCrossRefGoogle Scholar
  8. 8.
    Nguyen L, Rigo JM, Malgrange B, Moonen G, Belachew S (2003) Untangling the functional potential of PSA-NCAM-expressing cells in CNS development and brain repair strategies. Curr Med Chem 10:2185-2196PubMedCrossRefGoogle Scholar
  9. 9.
    Ronn LC, Hartz BP, Bock E (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 33:853-864PubMedCrossRefGoogle Scholar
  10. 10.
    Ronn LC, Berezin V, Bock E (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193-199PubMedCrossRefGoogle Scholar
  11. 11.
    Ditlevsen DK, Kohler LB, Pedersen MV, Risell M, Kolkova K, Meyer M, Berezin V, Bock E (2003) The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival. J Neurochem 84:546-556PubMedCrossRefGoogle Scholar
  12. 12.
    Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J eurochem 91:920-935PubMedCrossRefGoogle Scholar
  13. 13.
    Vutskits L, Gascon E, Zgraggen E, Kiss JZ (2006) The polysialylated neural cell adhesion molecule promotes neurogenesis in vitro. Neurochem Res 31:215-225PubMedCrossRefGoogle Scholar
  14. 14.
    Amoureux M-C, Cunningham BA, Edelman GM, Crossin KL (2000) N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype. J Neurosci 20:3631-3640PubMedGoogle Scholar
  15. 15.
    Krushel LA, Tai MH, Cunningham BA, Edelman GM, Crossin KL (1998) Neural cell adhesion molecule (N-CAM) domains and intracellular signaling pathways involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci U S A 95:2592-2596PubMedCrossRefGoogle Scholar
  16. 16.
    Cavallaro U, Niedermeyer J, Fuxa M, Christofori G (2001) N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3:650-657PubMedCrossRefGoogle Scholar
  17. 17.
    Prag S, Lepekhin EA, Kolkova K, Hartmann-Petersen R, Kawa A, Walmod PS, Belman V, Gallagher HC, Berezin V, Bock E, Pedersen N (2002) NCAM regulates cell motility. J Cell Sci 115:283-292PubMedGoogle Scholar
  18. 18.
    Francavilla C, Loeffler S, Piccini D, Kren A, Christofori G, Cavallaro U (2007) Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci 120:4388-4394PubMedCrossRefGoogle Scholar
  19. 19.
    Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867-879PubMedCrossRefGoogle Scholar
  20. 20.
    Vutskits L, Djebbara-Hannas Z, Zhang H, Paccaud JP, Durbec P, Rougon G, Muller D, Kiss JZ (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J NeuroSci 13:1391-1402PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93-103PubMedCrossRefGoogle Scholar
  22. 22.
    Povlsen GK, Berezin V, Bock E (2007) Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neutrite out growth. J Neurochem 104(3): 624-639Google Scholar
  23. 23.
    Korshunova I, Novitskaya V, Kiryushko D, Pedersen N, Kolkova K, Kropotova E, Mosevitsky M, Rayko M, Morrow JS, Ginzburg I, Berezin V, Bock E (2007) GAP-43 regulates NCAM-180-mediated neurite outgrowth. J Neurochem 100:1599-1612PubMedGoogle Scholar
  24. 24.
    Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157:521-532PubMedCrossRefGoogle Scholar
  25. 25.
    Williams EJ, Furness J, Walsh FS, Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13:583-594PubMedCrossRefGoogle Scholar
  26. 26.
    Kiselyov VV, Soroka V, Berezin V, Bock E (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169-1179PubMedCrossRefGoogle Scholar
  27. 27.
    Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691-701PubMedCrossRefGoogle Scholar
  28. 28.
    Garcia-Alonso LA (1999) Postembryonic sensory axon guidance in Drosophila. Cell Mol Life Sci 55:1386-1398PubMedCrossRefGoogle Scholar
  29. 29.
    Kristiansen LV, Velasquez E, Romani S, Baars S, Berezin V, Bock E, Hortsch M, Garcia-Alonso L (2005) Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila. Mol Cell Neurosci 28:141-152PubMedCrossRefGoogle Scholar
  30. 30.
    Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK (2006) A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 16:12-23PubMedCrossRefGoogle Scholar
  31. 31.
    Garcia-Alonso L, Romani S, Jimenez F (2000) The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron 28:741-752PubMedCrossRefGoogle Scholar
  32. 32.
    Islam R, Kristiansen LV, Romani S, Garcia-Alonso L, Hortsch M (2004) Activation of EGF receptor kinase by L1-mediated homophilic cell interactions. Mol Biol Cell 15:2003-2012PubMedCrossRefGoogle Scholar
  33. 33.
    Yamada M, Ikeuchi T, Hatanaka H (1997) The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol 51:19-37PubMedCrossRefGoogle Scholar
  34. 34.
    Novak U, Walker F, Kaye A (2001) Expression of EGFR-family proteins in the brain: role in development, health and disease. J Clin Neurosci 8:106-111PubMedCrossRefGoogle Scholar
  35. 35.
    Wong RW, Guillaud L (2004) The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev 15:147-156PubMedCrossRefGoogle Scholar
  36. 36.
    Lakshmanan J, Weichsel ME Jr, Fisher DA (1986) Epidermal growth factor in synaptosomal fractions of mouse cerebral cortex. J Neurochem 46:1081-1085PubMedCrossRefGoogle Scholar
  37. 37.
    Abe K, Saito H (2000) The mitogen-activated protein kinase cascade mediates neurotrophic effect of epidermal growth factor in cultured rat hippocampal neurons. Neurosci Lett 282:89-92PubMedCrossRefGoogle Scholar
  38. 38.
    Boillee S, Cadusseau J, Coulpier M, Grannec G, Junier MP (2001) Transforming growth factor alpha: a promoter of motoneuron survival of potential biological relevance. J Neurosci 21:7079-7088PubMedGoogle Scholar
  39. 39.
    Xian CJ, Zhou XF (2004) EGF family of growth factors: essential roles and functional redundancy in the nerve system. Front Biosci 9:85-92PubMedCrossRefGoogle Scholar
  40. 40.
    Goldshmit Y, Greenhalgh CJ, Turnley AM (2004) Suppressor of cytokine signalling-2 and epidermal growth factor regulate neurite outgrowth of cortical neurons. Eur J NeuroSci 20:2260-2266PubMedCrossRefGoogle Scholar
  41. 41.
    Koprivica V, Cho KS, Park JB, Yiu G, Atwal J, Gore B, Kim JA, Lin E, Tessier-Lavigne M, Chen DF, He Z (2005) EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310:106-110PubMedCrossRefGoogle Scholar
  42. 42.
    Morrison RS, Keating RF, Moskal JR (1988) Basic fibroblast growth factor and epidermal growth factor exert differential trophic effects on CNS neurons. J Neurosci Res 21:71-79PubMedCrossRefGoogle Scholar
  43. 43.
    Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287-296PubMedCrossRefGoogle Scholar
  44. 44.
    Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G (1999) Neuregulin Induces GABAA Receptor Subunit Expression and Neurite Outgrowth in Cerebellar Granule Cells. J Neurosci 19:10757-10766PubMedGoogle Scholar
  45. 45.
    Cai J, Peng X, Nelson KD, Eberhart R, Smith GM (2004) Synergistic improvements in cell and axonal migration across sciatic nerve lesion gaps using bioresorbable filaments and heregulin-beta1. J Biomed Mater Res A 69:247-258PubMedCrossRefGoogle Scholar
  46. 46.
    Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt AN, Talmage DA, Role LW, Charnay P, Marin O, Garel S (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125:127-142PubMedCrossRefGoogle Scholar
  47. 47.
    Normanno N, Bianco C, Strizzi L, Mancino M, Maiello MR, De Luca A, Caponigro F, Salomon DS (2005) The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6:243-257PubMedCrossRefGoogle Scholar
  48. 48.
    Barnes CJ, Kumar R (2003) Epidermal growth factor receptor family tyrosine kinases as signal integrators and therapeutic targets. Cancer Metastasis Rev 22:301-307PubMedCrossRefGoogle Scholar
  49. 49.
    Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11-31PubMedCrossRefGoogle Scholar
  50. 50.
    Dikic I, Giordano S (2003) Negative receptor signalling. Curr Opin Cell Biol 15:128-135PubMedCrossRefGoogle Scholar
  51. 51.
    Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893-905PubMedCrossRefGoogle Scholar
  52. 52.
    Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598-604PubMedCrossRefGoogle Scholar
  53. 53.
    Wiley HS (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284:78-88PubMedCrossRefGoogle Scholar
  54. 54.
    Baulida J, Carpenter G (1997) Heregulin degradation in the absence of rapid receptor-mediated internalization. Exp Cell Res 232:167-172PubMedCrossRefGoogle Scholar
  55. 55.
    Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271:5251-5257PubMedCrossRefGoogle Scholar
  56. 56.
    Hommelgaard AM, Lerdrup M, van Deurs B (2004) Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol Biol Cell 15:1557-1567PubMedCrossRefGoogle Scholar
  57. 57.
    Wang Z, Zhang L, Yeung TK, Chen X (1999) Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol Biol Cell 10:1621-1636PubMedGoogle Scholar
  58. 58.
    Lee HJ, Jung KM, Huang YZ, Bennett LB, Lee JS, Mei L, Kim TW (2002) Presenilin-dependent gamma-secretase-like intramembrane cleavage of ErbB4. J Biol Chem 277:6318-6323PubMedCrossRefGoogle Scholar
  59. 59.
    Rio C, Buxbaum JD, Peschon JJ, Corfas G (2000) Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 275:10379-10387PubMedCrossRefGoogle Scholar
  60. 60.
    Vecchi M, Baulida J, Carpenter G (1996) Selective cleavage of the heregulin receptor ErbB-4 by protein kinase C activation. J Biol Chem 271:18989-18995PubMedCrossRefGoogle Scholar
  61. 61.
    Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH (2002) Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156:843-854PubMedCrossRefGoogle Scholar
  62. 62.
    Melikova MS, Kondratov KA, Kornilova ES (2006) Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132. Cell Biol Int 30:31-43PubMedGoogle Scholar
  63. 63.
    Alwan HAJ, van Zoelen EJJ, van Leeuwen JEM (2003) Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem 278:35781-35790PubMedCrossRefGoogle Scholar
  64. 64.
    Stein RA, Staros JV (2000) Evolutionary analysis of the ErbB receptor and ligand families. J Mol Evol 50:397-412PubMedGoogle Scholar
  65. 65.
    Nilsson J, Vallbo C, Guo D, Golovleva I, Hallberg B, Henriksson R, Hedman H (2001) Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Commun 284:1155-1161PubMedCrossRefGoogle Scholar
  66. 66.
    Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, Amariglio N, Henriksson R, Rechavi G, Hedman H, Wides R, Yarden Y (2004) LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23:3270-3281PubMedCrossRefGoogle Scholar
  67. 67.
    Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL III, Sweeney C (2004) The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 279:47050-47056PubMedCrossRefGoogle Scholar
  68. 68.
    Andl CD, Rustgi AK (2005) No one-way street: cross-talk between e-cadherin and receptor tyrosine kinase (RTK) signaling: a mechanism to regulate RTK activity. Cancer Biol Ther 4:28-31PubMedCrossRefGoogle Scholar
  69. 69.
    Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H, Tsai K-L, Kim M, Locker J, Zhang Z-Y, Segall JE (2006) ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Res 66:1418-1426PubMedCrossRefGoogle Scholar
  70. 70.
    Bai J, Chiu W, Wang J, Tzeng T, Perrimon N, Hsu J (2001) The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128:591-601PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ENKAM PharmaceuticalsCopenhagen ØDenmark

Personalised recommendations