Structural Biology of NCAM

  • Vladislav SorokaEmail author
  • Christina Kasper
  • Flemming M. Poulsen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 663)


The neural cell adhesion molecule (NCAM) mediates Ca2+-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM is highly expressed in the nervous system and plays a key role in neural development, regeneration and synaptic plasticity, including learning and memory consolidation. The questions in the structural biology of NCAM are mainly focused on the mechanism of cell-cell interactions and the regulation of the molecular interactions involved. Numerous attempts to elucidate the homophilic binding mechanism of NCAM have produced several seemingly contradicting models. In this review, we will detail the progress made to date in the field.


NCAM Protein structure Cell adhesion Homophilic binding 


  1. 1.
    Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245-258CrossRefGoogle Scholar
  2. 2.
    Townes PL, Holtfreter J (1955) Directed movements and selective adhesion of embryonic amphibian cells. J Exp Zool 128:53-120CrossRefGoogle Scholar
  3. 3.
    Walmod PS, Pedersen MV, Berezin V, Bock E (2007) Cell adhesion molecules of the immunoglobulin superfamily in the nervous system. In: Lajtha A, Banik N (eds) Handbook of neurochemistry and molecular neurobiology, vol 7, Neural protein metabolism and function. Springer, New York, pp 35-152CrossRefGoogle Scholar
  4. 4.
    Williams AF, Barclay AN (1988) The immunoglobulin superfamily-domains for cell surface recognition. Annu Rev Immunol 6:381-405PubMedCrossRefGoogle Scholar
  5. 5.
    Shapiro L, Love J, Colman DR (2007) Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci 30:451-474PubMedCrossRefGoogle Scholar
  6. 6.
    Edelman GM, Crossing KL (1991) Cell adhesion molecules - implications for a molecular histology. Annu Rev Biochem 60:155-190PubMedCrossRefGoogle Scholar
  7. 7.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860-921PubMedCrossRefGoogle Scholar
  8. 8.
    Yoshihara Y, Oka S, Ikeda J et al (1991) Immunoglobulin superfamily molecules in the nervous system. Neurosci Res 10:83-105PubMedCrossRefGoogle Scholar
  9. 9.
    Crocker PR, Kelm S, Hartnell A et al (1996) Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily. Biochem Soc Trans 24:150-156PubMedGoogle Scholar
  10. 10.
    Jørgensen OS, Bock E (1974) Brain-specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23:879-880PubMedCrossRefGoogle Scholar
  11. 11.
    Rutishauser U, Thiery JP, Brackenbury R et al (1976) Mechanisms of adhesion among cells from neural tissues of the chick embryo. Proc Natl Acad Sci USA 73:577-581PubMedCrossRefGoogle Scholar
  12. 12.
    Brackenbury R, Thiery JP, Rutishauser U (1977) Adhesion among neural cells in chick embryo an immunological assay for molecules involved in cell-cell binding. J Biol Chem 252:6835-6840PubMedGoogle Scholar
  13. 13.
    Cunningham BA, Hemperly JJ, Murray BA et al (1987) Neural cell adhesion molecule: structure immunoglobulin-like domains cell surface modulation and alternative RNA splicing. Science 236:799-806PubMedCrossRefGoogle Scholar
  14. 14.
    Livingston B, Jacobs JL, Glick MC et al (1988) Extended polysialic acid chains (n greater than 55) in glycoproteins from human neuroblastoma cells. J Biol Chem 263:9443-9448PubMedGoogle Scholar
  15. 15.
    Acheson A, Sunshine JL, Rutishauser U (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol 114:143-153PubMedCrossRefGoogle Scholar
  16. 16.
    Michalides RB, Kwa D, Springall N et al (1994) NCAM and lung cancer. Int J Cancer Suppl 8:34-37PubMedCrossRefGoogle Scholar
  17. 17.
    Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101-118PubMedCrossRefGoogle Scholar
  18. 18.
    Harpaz Y, Chothia C (1994) Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238:528-539PubMedCrossRefGoogle Scholar
  19. 19.
    Casasnovas JM, Stehle T, Liu JH et al (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc Natl Acad Sci USA 95:4134-4139PubMedCrossRefGoogle Scholar
  20. 20.
    Chothia C, Jones EY (1997) The molecular structure of cell adhesion molecules. Annu Rev Biochem 66:823-862PubMedCrossRefGoogle Scholar
  21. 21.
    Streltsov VA, Varghese JN, Carmichael JA et al (2004) Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci USA 101:12444-12449PubMedCrossRefGoogle Scholar
  22. 22.
    Hynes RO (1990) Fibronectins. Springer, New YorkGoogle Scholar
  23. 23.
    Bork P, Downing AK, Kieffer B et al (1996) Structure and distribution of modules in extracellular proteins. Q Rev Biophys 29:119-167PubMedCrossRefGoogle Scholar
  24. 24.
    Thomsen NK, Soroka V, Jensen PH et al (1996) The three-dimensional structure of the first domain of neural cell adhesion molecule. Nat Struct Biol 3:581-585PubMedCrossRefGoogle Scholar
  25. 25.
    Jensen PH, Soroka V, Thomsen NK et al (1999) Structure and interactions of NCAM modules 1 and 2 - basic elements in neural cell adhesion. Nat Struct Biol 6:486-493PubMedCrossRefGoogle Scholar
  26. 26.
    Atkins AR, Chung J, Deechongkit S et al (2001) Solution structure of the third immunoglobulin domain of the neural cell adhesion molecule N-CAM: can solution studies define the mechanism of homophilic binding? J Mol Biol 311:161-172PubMedCrossRefGoogle Scholar
  27. 27.
    Kasper C, Rasmussen H, Kastrup JS et al (2000) Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 7:389-393PubMedCrossRefGoogle Scholar
  28. 28.
    Soroka V, Kolkova K, Kastrup JS et al (2003) Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11:1291-1301PubMedCrossRefGoogle Scholar
  29. 29.
    Atkins AR, Osborne MJ, Lashuel HA et al (1999) Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM. FEBS Lett 451:162-168PubMedCrossRefGoogle Scholar
  30. 30.
    Soroka V, Kiryushko D, Novitskaya V et al (2002) Induction of neuronal differentiation by a peptide corresponding to the homophilic binding site of the second Ig module of NCAM. J Biol Chem 227:24676-24683CrossRefGoogle Scholar
  31. 31.
    Lahrtz F, Horstkorte R, Cremer H et al (1997) VASE-encoded peptide modifies NCAM- and L1-mediated neurite outgrowth. J Neurosci Res 50:62-68PubMedCrossRefGoogle Scholar
  32. 32.
    Mendiratta SS, Sekulic N, Hernandez-Guzman FG et al (2006) A novel alpha-helix in the first fibronectin type III repeat of the neural cell adhesion molecule is critical for N-glycan polysialylation. J Biol Chem 281:36052-36059PubMedCrossRefGoogle Scholar
  33. 33.
    Kiselyov VV, Skladchikova G, Hinsby A et al (2003) Demonstration of a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691-701PubMedCrossRefGoogle Scholar
  34. 34.
    Carafoli F, Saffell JL, Hohenester E (2008) Structure of the tandem fibronectin type 3 domains of neural cell adhesion molecule. J Mol Biol 377:524-534PubMedCrossRefGoogle Scholar
  35. 35.
    Kunz B, Lierheimer R, Rader C et al (2002) Axonin-1/TAG-1 Mediates cell-cell adhesion by a cis-assited trans-interaction. J Biol Chem 277:4551-4557PubMedCrossRefGoogle Scholar
  36. 36.
    Anderson AA, Kendal CE, Garcia-Maya M et al (2005) A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J Neurochem 95:570-583PubMedCrossRefGoogle Scholar
  37. 37.
    Jacobsen J, Kiselyov V, Bock E et al (2008) A peptide motif from the second fibronectin module of the neural cell adhesion molecule, NCAM, NLIKQDDGGSPIRHY, is a binding site for the FGF receptor. Neurochem Res 32(12):2532-2539CrossRefGoogle Scholar
  38. 38.
    Dickson G, Gower HJ, Barton CH et al (1987) Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell 50:1119-1130PubMedCrossRefGoogle Scholar
  39. 39.
    Rao Y, Wu X-F, Gariepy J et al (1992) Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J Cell Biol 118:937-949PubMedCrossRefGoogle Scholar
  40. 40.
    Rao Y, Zhao X, Wu X-F et al (1993) Structural characterization of a homophilic binding site in the neural cell adhesion molecule. J Biol Chem 268:20630-20638PubMedGoogle Scholar
  41. 41.
    Rao Y, Zhao X, Siu C-H (1994) Mechanisms of homophilic binding mediated by the neural cell adhesion molecule NCAM. J Biol Chem 269:27540-27548PubMedGoogle Scholar
  42. 42.
    Ranheim TS, Edelman GM, Cunningham BA (1996) Homophilic adhesion mediated by the neural cell adhesion molecule involves multiple immunoglobulin domains. Proc Natl Acad Sci USA 93:4071-4075PubMedCrossRefGoogle Scholar
  43. 43.
    Kiselyov VV, Berezin V, Maar T et al (1997) The first Ig-like NCAM domain is involved in both double reciprocal interaction with the second Ig-like NCAM domain and in heparin binding. J Biol Chem 272:10125-10134PubMedCrossRefGoogle Scholar
  44. 44.
    Atkins AR, Osborne MJ, Lashuel HA et al (1999) Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM. FEBS Lett 451:162-168PubMedCrossRefGoogle Scholar
  45. 45.
    Shapiro L, Fannon AM, Kwong PD et al (1995) Structural basis of cell-cell adhesion by cadherins. Nature 374:327-337PubMedCrossRefGoogle Scholar
  46. 46.
    Kostrewa D, Brockhaus M, D’Arcy A et al (2001) X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J 20:4391-4398PubMedCrossRefGoogle Scholar
  47. 47.
    Freigang J, Proba K, Leder L et al (2000) The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 101:425-433PubMedCrossRefGoogle Scholar
  48. 48.
    Cole GJ, Akenson R (1989) Identification of a heparin-binding domain of the neural cell adhesion molecule N-CAM using synthetic peptides. Neuron 2:1157-1165PubMedCrossRefGoogle Scholar
  49. 49.
    Kulahin N, Rudenko O, Kiselyov V et al (2005) Modulation of the homophilic interaction between the first and second Ig modules of neural cell adhesion molecule by heparin. J Neurochem 95:46-55PubMedCrossRefGoogle Scholar
  50. 50.
    Atkins AR, Gallin WJ, Owens GC et al (2004) Neural cell adhesion molecule (N-CAM) homophilic binding mediated by the two N-terminal Ig domains is influenced by intramolecular domain-domain interactions. J Biol Chem 279:49633-49643PubMedCrossRefGoogle Scholar
  51. 51.
    Mörtl M, Sonderegger P, Diederichs K et al (2007) The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction. Protein Sci 16:2174-2183PubMedCrossRefGoogle Scholar
  52. 52.
    Johnson CP, Fujimoto I, Perrin-Tricaud C et al (2004) Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc Natl Acad Sci USA 101:6963-6968PubMedCrossRefGoogle Scholar
  53. 53.
    Wieland JA, Gewirth AA, Leckband DE (2005) Single molecule adhesion measurements reveal two homophilic neural cell adhesion molecule bonds with mechanically distinct properties. J Biol Chem 280:41037-41046PubMedCrossRefGoogle Scholar
  54. 54.
    Kulahin N, Kasper C, Gajhede M et al (2004) Expression, crystallization and preliminary X-ray analysis of extracellular modules of the neural cell-adhesion molecules NCAM and L1. Acta Crystallogr D Biol Crystallogr 60:591-593PubMedCrossRefGoogle Scholar
  55. 55.
    Wu H, Kwong PD, Hendrickson WA (1997) Dimeric association and segmental variability in the structure of human CD4. Nature 387:527-530PubMedCrossRefGoogle Scholar
  56. 56.
    Su X-D, Gastinel LN, Vaughn DE et al (1998) Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. Science 281:991-995PubMedCrossRefGoogle Scholar
  57. 57.
    Chen X, Kim TD, Carman CV et al (2007) Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization. Proc Natl Acad Sci USA 104:15358-15363PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson CP, Fragneto G, Konovalov O et al (2005) Structural studies of the neural-cell-adhesion molecule by X-ray and neutron reflectivity. Biochemistry 44:546-554PubMedCrossRefGoogle Scholar
  59. 59.
    Hall AK, Rutishauser U (1987) Visualization of neural cell adhesion molecule by electron microscopy. J Cell Biol 104:1579-1586PubMedCrossRefGoogle Scholar
  60. 60.
    Becker JW, Erickson HP, Hoffman S et al (1989) Topology of cell adhesion molecules. Proc Natl Acad Sci USA 86:1088-1092PubMedCrossRefGoogle Scholar
  61. 61.
    Hunte C, Michel H (2002) Crystallisation of membrane proteins mediated by antibody fragments. Curr Opin Struct Biol 4:503-508CrossRefGoogle Scholar
  62. 62.
    Shea C, Bloedorn L, Sullivan MA (2005) Rapid isolation of single-chain antibodies for structural genomics. J Struct Funct Genomics 6:171-175PubMedCrossRefGoogle Scholar
  63. 63.
    Rigaud J, Chami M, Lambert O et al (2000) Use of detergents in two-dimensional crystallization of membrane proteins. Biochim Biophys Acta 1508:112-128PubMedCrossRefGoogle Scholar
  64. 64.
    Vink M, Derr K, Love J et al (2007) A high-throughput strategy to screen 2D crystallization trials of membrane proteins. Struct Biol 160:295-304CrossRefGoogle Scholar
  65. 65.
    Neylon C (2008) Small angle neutron and X-ray scattering in structural biology: recent examples from the literature. Eur Biophys J 37:531-541PubMedCrossRefGoogle Scholar
  66. 66.
    Pickford AR, Campbell ID (2004) NMR studies of modular protein structures and their interactions. Chem Rev 104:3557-3566PubMedCrossRefGoogle Scholar
  67. 67.
    J-H W, Springer TA (1998) Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol Rev 163:197-215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vladislav Soroka
    • 1
    Email author
  • Christina Kasper
    • 1
  • Flemming M. Poulsen
    • 1
  1. 1.Novo Nordisk A/SMåløvDenmark

Personalised recommendations