Skip to main content

Gene Expression Arrays in Pancreatic Cancer Drug Discovery Research

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer
  • 685 Accesses

Abstract

The development of gene expression arrays to simultaneously quantify the expression of thousands of genes has been a leap forward in our attempt to understand the biology of pancreatic cancer in a variety of contexts. When combined with supervised and unsupervised interrogations using complex mathematical algorithms, researchers have been able to unveil specific molecular features of subsets of tumors. This has subsequently led to a greater understanding of the heterogeneity of pancreatic cancer genesis, metastasis, and resistance to drug therapy. Further, these studies have provided lists of proteins that could potentially be targeted to modify these phenomena, as well as serve as biomarkers during the drug discovery process and translation to the clinic. This chapter focuses on approaches to the application of gene expression arrays that have been able to address these questions, with special consideration of how they can and are being used to uncover and develop new therapies for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Adorjan P, Distler J, Lipscher E et al (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21

    Google Scholar 

  • Akada M, Crnogorac-Jurcevic T, Lattimore S et al (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11:3094–3101

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh A, Eisen M, Davis RE et al (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 64:71–78

    Article  PubMed  CAS  Google Scholar 

  • Allander SV, Nupponen NN, Ringner M et al (2001) Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res 61:8624–8628

    PubMed  CAS  Google Scholar 

  • Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

    Article  PubMed  CAS  Google Scholar 

  • Amler LC, Agus DB, LeDuc C et al (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60:6134–6141

    PubMed  CAS  Google Scholar 

  • Antipova AA, Stockwell BR, Golub TR (2008) Gene expression-based screening for inhibitors of PDGFR signaling. Genome Biol 9:R47

    Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Sata N, Nagai H (2007) Gene expression analysis for predicting gemcitabine sensitivity in pancreatic cancer patients. HPB (Oxford) 9:150–155

    Google Scholar 

  • Barrett MT, Scheffer A, Ben-Dor A et al (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101:17765–17770

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F, Finetti P, Rougemont J et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65:2170–2178

    Article  PubMed  CAS  Google Scholar 

  • Binkley CE, Zhang L, Greenson JK et al (2004) The molecular basis of pancreatic fibrosis: common stromal gene expression in chronic pancreatitis and pancreatic adenocarcinoma. Pancreas 29:254–263

    Article  PubMed  CAS  Google Scholar 

  • Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  • Bloom G, Yang IV, Boulware D et al (2004) Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol 164:9–16

    PubMed  CAS  Google Scholar 

  • Bockhorn M, Tsuzuki Y, Xu L et al (2003) Differential vascular and transcriptional responses to anti-vascular endothelial growth factor antibody in orthotopic human pancreatic cancer xenografts. Clin Cancer Res 9:4221–4226

    PubMed  CAS  Google Scholar 

  • Brown MP, Grundy WN, Lin D et al (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262–267

    Article  PubMed  CAS  Google Scholar 

  • Buchholz M, Kestler HA, Bauer A et al (2005) Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 11:8048–8054

    Article  PubMed  CAS  Google Scholar 

  • Bueno-de-Mesquita JM, van Harten WH, Retel VP et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl:490–495

    Article  PubMed  CAS  Google Scholar 

  • Cordes N, Frick S, Brunner TB et al (2007) Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 26:6851–6862

    Article  PubMed  CAS  Google Scholar 

  • Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893

    Article  PubMed  CAS  Google Scholar 

  • Crnogorac-Jurcevic T, Efthimiou E, Capelli P et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20:7437–7446

    Article  PubMed  CAS  Google Scholar 

  • Dave SS, Wright G, Tan B et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159–2169

    Article  PubMed  CAS  Google Scholar 

  • DeRisi J, Penland L, Brown PO et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457–460

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Lieberman J (2006) Knocking down disease with siRNAs. Cell 126:231–235

    Article  PubMed  CAS  Google Scholar 

  • Ekins S, Nikolsky Y, Bugrim A et al (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Feldmann G, Habbe N, Dhara S et al (2008) Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 57:1420–1430

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gandhi TK, Zhong J, Mathivanan S et al (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293

    Article  PubMed  CAS  Google Scholar 

  • Giroux V, Malicet C, Barthet M et al (2006) p8 is a new target of gemcitabine in pancreatic cancer cells. Clin Cancer Res 12:235–241

    Article  PubMed  CAS  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  • Gray PJ Jr, Bearss DJ, Han H et al (2004) Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Mol Cancer Ther 3:641–646

    Article  PubMed  CAS  Google Scholar 

  • Grutzmann R, Boriss H, Ammerpohl O et al (2005) Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 24:5079–5088

    Article  PubMed  CAS  Google Scholar 

  • Grutzmann R, Foerder M, Alldinger I et al (2003) Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443:508–517

    Article  PubMed  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G et al (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    Article  PubMed  CAS  Google Scholar 

  • Hahn CK, Ross KN, Warrington IM et al (2008) Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci USA 105:9751–9756

    Article  PubMed  CAS  Google Scholar 

  • Hahn SA, Greenhalf B, Ellis I et al (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95:214–221

    Article  PubMed  CAS  Google Scholar 

  • Han H, Bearss DJ, Browne LW et al (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896

    PubMed  CAS  Google Scholar 

  • Hartmann LC, Lu KH, Linette GP et al (2005) Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin Cancer Res 11:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Hedenfalk I, Duggan D, Chen Y et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548

    Article  PubMed  CAS  Google Scholar 

  • Hedenfalk I, Ringner M, Ben-Dor A et al (2003) Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proc Natl Acad Sci USA 100:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Heighway J, Knapp T, Boyce L et al (2002) Expression profiling of primary non-small cell lung cancer for target identification. Oncogene 21:7749–7763

    Article  PubMed  CAS  Google Scholar 

  • Hess V, Glimelius B, Grawe P et al (2008) CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 9:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330

    Article  PubMed  CAS  Google Scholar 

  • Higgins JP, Shinghal R, Gill H et al (2003) Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 162:925–932

    PubMed  CAS  Google Scholar 

  • Hofmann WK, de Vos S, Elashoff D et al (2002) Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 359:481–486

    Article  PubMed  CAS  Google Scholar 

  • Holloway SE, Beck AW, Girard L et al (2005) Increased expression of Cyr61 (CCN1) identified in peritoneal metastases from human pancreatic cancer. J Am Coll Surg 200:371–377

    Article  PubMed  Google Scholar 

  • Huusko P, Ponciano-Jackson D, Wolf M et al (2004) Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36:979–983

    Article  PubMed  CAS  Google Scholar 

  • Iacobuzio-Donahue CA, Ashfaq R, Maitra A et al (2003a) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63:8614–8622

    CAS  Google Scholar 

  • Iacobuzio-Donahue CA, Maitra A, Olsen M et al (2003b) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162

    CAS  Google Scholar 

  • Iiizumi M, Hosokawa M, Takehara A et al (2006) EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth. Cancer Sci 97:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350

    Article  PubMed  CAS  Google Scholar 

  • Janoueix-Lerosey I, Novikov E, Monteiro M et al (2004) Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene 23:5912–5922

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Andrews S, Brinkman R et al (1994) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265:2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kayed H, Kleeff J, Kolb A et al (2006) FXYD3 is overexpressed in pancreatic ductal adenocarcinoma and influences pancreatic cancer cell growth. Int J Cancer 118:43–54

    Article  PubMed  CAS  Google Scholar 

  • Khan J, Bittner ML, Saal LH et al (1999) cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96:13264–13269

    Article  PubMed  CAS  Google Scholar 

  • Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  PubMed  CAS  Google Scholar 

  • Koide N, Yamada T, Shibata R et al (2006) Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 12:2419–2426

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Shen L, Yan PS et al (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101:7398–7403

    Article  PubMed  CAS  Google Scholar 

  • Kudoh K, Ramanna M, Ravatn R et al (2000) Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res 60:4161–4166

    PubMed  CAS  Google Scholar 

  • Lacal JC (2007) How molecular biology can improve clinical management: the MammaPrint experience. Clin Transl Oncol 9:203

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Laurell H, Bouisson M, Berthelemy P et al (2006) Identification of biomarkers of human pancreatic adenocarcinomas by expression profiling and validation with gene expression analysis in endoscopic ultrasound-guided fine needle aspiration samples. World J Gastroenterol 12:3344–3351

    PubMed  CAS  Google Scholar 

  • Li R, Wang H, Bekele BN et al (2006) Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25:2628–2635

    Article  PubMed  CAS  Google Scholar 

  • Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  • Maehara S, Tanaka S, Shimada M et al (2004) Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int J Cancer 112:184–189

    Article  PubMed  CAS  Google Scholar 

  • Mahlamaki EH, Kauraniemi P, Monni O et al (2004) High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 6:432–439

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PJ, Longley DB, Latif T et al (2003) Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res 63:4602–4606

    PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  • Moch H, Schraml P, Bubendorf L et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154:981–986

    PubMed  CAS  Google Scholar 

  • Moniaux N, Chakraborty S, Yalniz M et al (2008) Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 98:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Nakahira S, Nakamori S, Tsujie M et al (2007) Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 120:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Otsuka M, Hoshida Y et al (2005) Identifying genes with differential expression in gemcitabine-resistant pancreatic cancer cells using comprehensive transcriptome analysis. Oncol Rep 14:1263–1267

    PubMed  CAS  Google Scholar 

  • Nakamura T, Furukawa Y, Nakagawa H et al (2004) Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23:2385–2400

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Fidler IJ, Coombes KR (2007a) Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139–148

    Article  CAS  Google Scholar 

  • Nakamura T, Kuwai T, Kitadai Y et al (2007b) Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res 67:7597–7604

    Article  CAS  Google Scholar 

  • Okada T, Masuda N, Fukai Y et al (2006) Immunohistochemical expression of 14-3-3 sigma protein in intraductal papillary-mucinous tumor and invasive ductal carcinoma of the pancreas. Anticancer Res 26:3105–3110

    PubMed  CAS  Google Scholar 

  • Peck D, Crawford ED, Ross KN et al (2006) A method for high-throughput gene expression signature analysis. Genome Biol 7:R61

    Google Scholar 

  • Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 Suppl:496–501

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  • Ringner M, Peterson C (2003) Microarray-based cancer diagnosis with artificial neural networks. Biotechniques Suppl:30–35

    Google Scholar 

  • Satoh K, Hamada S, Kimura K et al (2008) Up-regulation of MSX2 enhances the malignant phenotype and is associated with twist 1 expression in human pancreatic cancer cells. Am J Pathol 172:926–939

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Downward J (2001) Navigating gene expression using microarrays-a technology review. Nat Cell Biol 3:E190–195

    Article  PubMed  CAS  Google Scholar 

  • Shannon W, Culverhouse R, Duncan J (2003) Analyzing microarray data using cluster analysis. Pharmacogenomics 4:41–52

    Article  PubMed  CAS  Google Scholar 

  • Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Febbo PG, Ross K et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

    Article  PubMed  CAS  Google Scholar 

  • Siveke JT, Einwachter H, Sipos B et al (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12:266–279

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  PubMed  CAS  Google Scholar 

  • Stegmaier K, Ross KN, Colavito SA et al (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 36:257–263

    Article  PubMed  CAS  Google Scholar 

  • Stegmaier K, Corsello SM, Ross KN et al (2005) Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106:2841–2848

    Article  PubMed  CAS  Google Scholar 

  • Stegmaier K, Wong JS, Ross KN et al (2007) Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med 4:e122

    Google Scholar 

  • Takehara A, Hosokawa M, Eguchi H et al (2007) Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res 67:9704–9712

    Article  PubMed  CAS  Google Scholar 

  • Taniuchi K, Nakagawa H, Hosokawa M et al (2005) Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 65:3092–3099

    PubMed  CAS  Google Scholar 

  • Terris B, Blaveri E, Crnogorac-Jurcevic T et al (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160:1745–1754

    PubMed  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  Google Scholar 

  • van Delft FW, Bellotti T, Luo Z et al (2005) Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. Br J Haematol 130:26–35

    Article  PubMed  CAS  Google Scholar 

  • Vimalachandran D, Greenhalf W, Thompson C et al (2005) High nuclear S100A6 (Calcyclin) is significantly associated with poor survival in pancreatic cancer patients. Cancer Res 65:3218–3225

    PubMed  CAS  Google Scholar 

  • Wain HM, Lush MJ, Ducluzeau F et al (2004) Genew: the Human Gene Nomenclature Database, 2004 updates. Nucleic Acids Res 32:D255–D257

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Sahoo D, Arvanitis C et al (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4:e1000090

    Google Scholar 

  • Xu J, Stolk JA, Zhang X et al (2000) Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res 60:1677–1682

    PubMed  CAS  Google Scholar 

  • Xu Y, Selaru FM, Yin J et al (2002) Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res 62:3493–3497

    PubMed  CAS  Google Scholar 

  • Yang SX, Simon RM, Tan AR et al (2005) Gene expression patterns and profile changes pre- and post-erlotinib treatment in patients with metastatic breast cancer. Clin Cancer Res 11:6226–6232

    Article  PubMed  CAS  Google Scholar 

  • Yuen T, Wurmbach E, Pfeffer RL et al (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30:e48

    Google Scholar 

  • Zembutsu H, Ohnishi Y, Tsunoda T et al (2002) Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 62:518–527

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gawad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gawad, C. (2010). Gene Expression Arrays in Pancreatic Cancer Drug Discovery Research. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_6

Download citation

Publish with us

Policies and ethics