Skip to main content

Mouse Xenograft Models for Drug Discovery in Pancreatic Cancer

  • Chapter
  • First Online:
  • 743 Accesses

Abstract

It is estimated that the development of a new anticancer agent costs US $800–1,000 million and takes over a decade between conception and approval. However, 90% of novel antineoplastic drugs fail in the clinic despite evidence of antitumor efficacy in classical preclinical models. This raises serious concerns whether such models are predictive of drug efficacy in humans, supporting the development of alternative approaches. Furthermore, a general transition has been observed from the empirical drug screening of cytotoxic agents against uncharacterized tumor models to target-orientated drug screening of agents with defined mechanisms of action. New approaches to anticancer drug development involve the molecular characterization of models along with an appreciation of the pharmacodynamic and pharmacokinetic properties of the tested drug. This chapter focuses on the classical and new preclinical screening models and techniques for anticancer drug development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Assersohn L, Gangi L, Zhao Y et al (2002) The feasibility of using fine needle aspiration from primary breast cancers for cDNA microarray analyses. Clin Cancer Res 8:794–801

    CAS  PubMed  Google Scholar 

  • Bankert RB, Egilmez NK, Hess SD (2001) Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol 22:386–393

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    CAS  PubMed  Google Scholar 

  • Basu GD, Pathangey LB, Tinder TL et al (2004) Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2:632–642

    CAS  PubMed  Google Scholar 

  • Bearss DJ, Subler MA, Hundley JE et al (2000) Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumors. Oncogene 19:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40:852–857

    Article  CAS  PubMed  Google Scholar 

  • Bishop PC, Myers T, Robey R et al (2002) Differential sensitivity of cancer cells to inhibitors of the epidermal growth factor receptor family. Oncogene 21:119–127

    Article  CAS  PubMed  Google Scholar 

  • Bocsi J, Zalatnai A (1999) Establishment and long-term xenografting of human pancreatic carcinomas in immunosuppressed mice: changes and stability in morphology, DNA ploidy and proliferation activity. J Cancer Res Clin Oncol 125:9–19

    Article  CAS  PubMed  Google Scholar 

  • Boyd M (1997). The NCI in vitro anticancer drug discovery screen: concept, implementation, and operation, 1985–1995. In: Teicher BA (ed) Anticancer drug development guide:preclinical screening, clinical trials, and approval. Humana Press, Totowa, p 23

    Google Scholar 

  • Campiglio M, Locatelli A, Olgiati C et al (2004) Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 ('Iressa') is independent of EGFR expression level. J Cell Physiol 198:259–268

    Article  CAS  PubMed  Google Scholar 

  • Chudnovsky Y, Adams AE, Robbins PB et al (2005) Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 37:745–749

    Article  CAS  PubMed  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  PubMed  Google Scholar 

  • Decker S, Hollingshead M, Bonomi CA et al (2004) The hollow fibre model in cancer drug screening: the NCI experience. Eur J Cancer 40:821–826

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185

    Article  PubMed  Google Scholar 

  • Donelli MG, Rosso R, Garattini S (1967) Selective chemotherapy in relation to the site of tumor transplantation. Int J Cancer 2:421–424

    Article  CAS  PubMed  Google Scholar 

  • Eccles S (2002). Models for evaluation of targeted therapies of metastatic disease. In Teicher BA (eds) Tumor models in cancer research. Humana Press, Totowa, pp 293–319

    Google Scholar 

  • El Hilali N, Rubio N, Martinez-Villacampa M et al (2002) Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 82:1563–1571

    PubMed  Google Scholar 

  • Engelholm SA, Vindelov LL, Spang-Thomsen M et al (1985) Genetic instability of cell lines derived from a single human small cell carcinoma of the lung. Eur J Cancer Clin Oncol 21:815–824

    Article  CAS  PubMed  Google Scholar 

  • Fichtner I, Slisow W, Gill J et al (2004) Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer 40:298–307

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ, Wilmanns C, Staroselsky A et al (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 13:209–222

    Article  CAS  PubMed  Google Scholar 

  • Fiebig HH, Maier A, Burger AM (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 40:802–820

    Article  CAS  PubMed  Google Scholar 

  • Flanagan SP (1966) 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res 8:295–309

    Article  CAS  PubMed  Google Scholar 

  • Goggins M, Schutte M, Lu J et al (1996) Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 56:5360–5364

    CAS  PubMed  Google Scholar 

  • Goldin A, Venditti JM, Kline I et al (1960) Evaluation of antileukemic agents employing advanced leukemia L1210 in mice. II. Cancer Res 20(5):382–469

    CAS  PubMed  Google Scholar 

  • Goldin A, Venditti JM, Kline I et al (1961) Evaluation of chemical agents against carcinoma CA-755 in mice. Cancer Res 21:617–691

    CAS  PubMed  Google Scholar 

  • Graham C, Tucker C, Creech J et al (2006) Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Cancer Res 12:223–234

    Article  CAS  PubMed  Google Scholar 

  • Habu S, Fukui H, Shimamura K et al (1981) In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol 127:34–38

    CAS  PubMed  Google Scholar 

  • Hahn SA, Greenhalf B, Ellis I et al (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95:214–221

    Article  CAS  PubMed  Google Scholar 

  • Hausser HJ, Brenner RE (2005) Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun 333:216–222

    Article  CAS  PubMed  Google Scholar 

  • Hoffman R (2002) Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556

    Article  CAS  PubMed  Google Scholar 

  • Hollingshead MG, Alley MC, Camalier RF et al (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57:131–141

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Kobayashi T, Tashiro T et al (1989) Evaluation of antitumor activity in a human breast tumor/nude mouse model with a special emphasis on treatment dose. Cancer 64:1577–1582

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Tashiro T, Kobayashi T et al (1988) Responsiveness of human gastric tumors implanted in nude mice to clinically equivalent doses of various antitumor agents. Jpn J Cancer Res 79:517–522

    CAS  PubMed  Google Scholar 

  • Jacks T (1996) Tumor suppressor gene mutations in mice. Annu Rev Genet 30:603–636

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Murray T, Samuels A et al (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26

    Article  PubMed  Google Scholar 

  • Jimeno A, Solomon A, Karikari C, Garrido-Laguna I, Trusty D, Hruban R, Schulick R, Cameron J, Maitra A, Hidalgo M (2008). A prospective validation of a direct tumor xenograft model in pancreatic ductal adenocarcinoma (PDA). ASCO Annual Meeting. Abstract 4500

    Google Scholar 

  • Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  Google Scholar 

  • Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40:827–836

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2:S134–139

    CAS  PubMed  Google Scholar 

  • Killion JJ, Radinsky R, Fidler IJ (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17:279–284

    Article  PubMed  Google Scholar 

  • Kim JB, Stein R, O'Hare MJ (2005) Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol 26:173–185

    Article  PubMed  Google Scholar 

  • Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058

    CAS  PubMed  Google Scholar 

  • Lin WC, Pretlow TP, Pretlow TG et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817

    CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Hamm J, Dancey J et al (2003) Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 21:3296–3302

    Article  CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Pegram MD, Pauletti G, Slamon DJ (1998) HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 52:65–77

    Article  CAS  PubMed  Google Scholar 

  • Pelosi G, Bresaola E, Rodella S et al (1994) Expression of proliferating cell nuclear antigen, Ki-67 antigen, estrogen receptor protein, and tumor suppressor p53 gene in cytologic samples of breast cancer: an immunochemical study with clinical, pathobiological, and histologic correlations. Diagn Cytopathol 11:131–140

    Article  CAS  PubMed  Google Scholar 

  • Perez-Soler R, Kemp B, Wu QP et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6:4932–4938

    CAS  PubMed  Google Scholar 

  • Peterson JK, Houghton PJ (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 40:837–844

    Article  CAS  PubMed  Google Scholar 

  • Plowman J (1997). Human tumor xenograft models in NCI drug development. Humana Press, Totowa

    Google Scholar 

  • Pusztai L, Ayers M, Stec J et al (2003) Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res 9:2406–2415

    CAS  PubMed  Google Scholar 

  • Rego EM, He LZ, Warrell RP Jr et al (2000) Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA 97:10173–10178

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Viqueira B, Jimeno A, Cusatis G et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Viqueira B, Mezzadra H, Nielsen ME et al (2007) Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Mol Cancer Ther 6:515–523

    Article  CAS  PubMed  Google Scholar 

  • Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumour to "Nude" mice. Acta Pathol Microbiol Scand 77:758–760

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA, Feigal E (1999) Evolving approaches to cancer drug discovery and development at the National Cancer Institute, USA. Ann Oncol 10:1287–1291

    Article  CAS  PubMed  Google Scholar 

  • Schein PS, Scheffler B (2006) Barriers to efficient development of cancer therapeutics. Clin Cancer Res 12:3243–3248

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani V, Ricci F, Rubio-Viqueira B et al (2006) Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res 12:2492–2497

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  PubMed  Google Scholar 

  • Simpson-Abelson MR, Sonnenberg GF, Takita H et al (2008) Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rgamma(null) mice. J Immunol 180:7009–7018

    CAS  PubMed  Google Scholar 

  • Smith-Jones PM, Solit DB, Akhurst T et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  CAS  PubMed  Google Scholar 

  • Sorio C, Bonora A, Orlandini S et al (2001) Successful xenografting of cryopreserved primary pancreatic cancers. Virchows Arch 438:154–158

    Article  CAS  PubMed  Google Scholar 

  • Stock CC, Clarke DA, Philips FS et al (1960) Cancer chemotherapy screening data. V. Sarcoma 180 screening data. Cancer Res 20(3):1–192

    Google Scholar 

  • Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11:971–981

    CAS  PubMed  Google Scholar 

  • Takimoto CH (2001) Why drugs fail: of mice and men revisited. Clin Cancer Res 7:229–230

    CAS  PubMed  Google Scholar 

  • Talmadge JE, Meyers KM, Prieur DJ et al (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature 284:622–624

    Article  CAS  PubMed  Google Scholar 

  • Tan A. JA, Rubio-Viqueira B, Hidalgo M (2008) NCI-60 gene set connectivity map (GS-CMAP): Connecting pathway-based gene expression profiles for therapeutic efficacy determination. J Clin Oncol 26 (May 20 suppl; abstr 3588)

    Google Scholar 

  • Tan M, Fang HB, Tian GL et al (2005) Repeated-measures models with constrained parameters for incomplete data in tumour xenograft experiments. Stat Med 24:109–119

    Article  PubMed  Google Scholar 

  • Thomsen M, Yacoub-Youssef H, Marcheix B (2005) Reconstitution of a human immune system in immunodeficient mice: models of human alloreaction in vivo. Tissue Antigens 66:73–82

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E, van de Velde H, Karasek P et al (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22:1430–1438

    Article  PubMed  Google Scholar 

  • van der Heijden MS, Brody JR, Dezentje DA et al (2005) In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin Cancer Res 11:7508–7515

    Article  CAS  PubMed  Google Scholar 

  • Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108:135–144

    Article  PubMed  Google Scholar 

  • Venditti JM, Wesley RA, Plowman J (1984) Current NCI preclinical antitumor screening in vivo: results of tumor panel screening, 1976–1982, and future directions. Adv Pharmacol Chemother 20:1–20

    Article  CAS  PubMed  Google Scholar 

  • Von Hoff DD (1998) There are no bad anticancer agents, only bad clinical trial designs – twenty-first Richard and Hinda Rosenthal Foundation Award Lecture. Clin Cancer Res 4:1079–1086

    Google Scholar 

  • Wang X, Fu X, Brown PD et al (1994) Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 54:4726–4728

    CAS  PubMed  Google Scholar 

  • Weiss B, Shannon K (2003) Mouse cancer models as a platform for performing preclinical therapeutic trials. Curr Opin Genet Dev 13:84–89

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  CAS  PubMed  Google Scholar 

  • Williams SS, Chen FA, Kida H et al (1996) Engraftment of human tumor-infiltrating lymphocytes and the production of anti-tumor antibodies in SCID mice. J Immunol 156:1908–1915

    CAS  PubMed  Google Scholar 

  • Yoshimura M, Endo S, Hioki K et al (1997) Chemotherapeutic profiles of human tumors implanted in SCID mice showing appreciable inconsistencies with those in nude mice. Exp Anim 46:153–156

    Article  CAS  PubMed  Google Scholar 

  • Zubrod CG (1972) The national program for cancer chemotherapy. JAMA 222:1161–1162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rubio-Viqueira, B., Hidalgo, M. (2010). Mouse Xenograft Models for Drug Discovery in Pancreatic Cancer. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_2

Download citation

Publish with us

Policies and ethics