Skip to main content

The Development of Pharmacodynamic Endpoint Models for Evaluation of Therapeutics in Pancreatic Cancer

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer

Abstract

The lack of development of new, more effective, therapies for pancreatic cancer has been disappointing. Among the factors limiting the development of targeted therapy approaches has been the inherent molecular heterogeneity of this disease combined with the challenge of obtaining fresh tumor tissue for the identification of pharmacodynamic biomarkers to segment patients based on target expression and resistance factors. Although many pre-clinical studies include pharmacodynamic studies, few large clinical studies have included similar biological correlative endpoints. Gemcitabine, although only modestly effective, still remains the standard of care. Emerging studies have identified potential molecular and genetic markers for cellular transporters and metabolism of gemcitabine which may be useful in predicting both clinical benefit and toxicity from this agent. The continued development of new therapeutics combined with identification of pharmacodynamic biomarkers to predict and monitor response to anti-cancer agents represents an exciting opportunity to individualize therapy and improve outcomes in this challenging disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albazaz R, Verbeke CS, Rahman SH et al (2005) Cyclooxygenase-2 expression associated with severity of PanIN lesions: a possible link between chronic pancreatitis and pancreatic cancer. Pancreatology 5:361–369

    Article  PubMed  CAS  Google Scholar 

  • Amoh Y, Nagakura C, Maitra A et al (2006) Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Res 26:3237–3242

    PubMed  CAS  Google Scholar 

  • Arteaga CL (2001) The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 19:32S–40S

    PubMed  CAS  Google Scholar 

  • Beerepoot LV, Mehra N, Vermaat JS et al (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–145

    Article  PubMed  CAS  Google Scholar 

  • Bengala C, Guarneri V, Giovannetti E et al (2005) Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma. Br J Cancer 93:35–40

    Article  PubMed  CAS  Google Scholar 

  • Berger AC, Garcia M Jr, Hoffman JP et al (2008) Postresection CA 19-9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemoradiation: a prospective validation by RTOG 9704. J Clin Oncol 26:5918–5922

    Article  PubMed  Google Scholar 

  • Bhanot U, Heydrich R, Moller P et al (2006) Survivin expression in pancreatic intraepithelial neoplasia (PanIN): steady increase along the developmental stages of pancreatic ductal adenocarcinoma. Am J Surg Pathol 30:754–759

    Article  PubMed  Google Scholar 

  • Boeck S, Stieber P, Holdenrieder S et al (2006) Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology 70:255–264

    Article  PubMed  CAS  Google Scholar 

  • Bouvet M, Wang J, Nardin SR et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62:1534–1540

    PubMed  CAS  Google Scholar 

  • Clark CJ, Sage EH (2008) A prototypic matricellular protein in the tumor microenvironment−where there’s SPARC, there’s fire. J Cell Biochem 104:721–732

    Article  PubMed  CAS  Google Scholar 

  • Colby JK, Klein RD, McArthur MJ et al (2008) Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia 10:782–796

    PubMed  CAS  Google Scholar 

  • Couvelard A, O’Toole D, Leek R, Turley H et al (2005) Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 46:668–676

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, Alvan G, Dahl SG et al (2005) Mechanism-based pharmacokinetic-pharmacodynamic modeling − a new classification of biomarkers. Pharm Res 22:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Delbeke D, Pinson CW (2004) Pancreatic tumors: role of imaging in the diagnosis, staging, and treatment. J Hepatobiliary Pancreat Surg 11:4–10

    Article  PubMed  Google Scholar 

  • Deng G, Herrler M, Burgess D et al (2008) Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res 10:R69

    Google Scholar 

  • Desai NP, Trieu V, Hwang LY et al (2008) Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs 19:899–909

    Article  PubMed  CAS  Google Scholar 

  • Dragovich T, Burris H III, Loehrer P et al (2008) Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. Am J Clin Oncol 31:157–162

    Article  PubMed  CAS  Google Scholar 

  • El MG, Le TC, Batty GN et al (2008) Markers involved in resistance to cytotoxics and targeted therapeutics in pancreatic cancer. Cancer Treat Rev 35:167–174

    Google Scholar 

  • El-Rayes BF, Ali S, Sarkar FH et al (2004) Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol Cancer Ther 3:1421–1426

    PubMed  CAS  Google Scholar 

  • El-Rayes BF, Zalupski MM, Shields AF et al (2005) A phase II study of celecoxib, gemcitabine, and cisplatin in advanced pancreatic cancer. Invest New Drugs 23:583–590

    Article  PubMed  CAS  Google Scholar 

  • Eltzschig HK, Abdulla P, Hoffman E et al (2005) HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald SM, Goyal RK, Osborne WR et al (2006) Identification of functional single nucleotide polymorphism haplotypes in the cytidine deaminase promoter. Hum Genet 119:276–283

    Article  PubMed  CAS  Google Scholar 

  • Fjallskog ML, Hessman O, Eriksson B et al (2007) Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas. Acta Oncol 46:741–746

    Article  PubMed  CAS  Google Scholar 

  • Fleming JB, Brekken RA (2003) Functional imaging of angiogenesis in an orthotopic model of pancreatic cancer. J Cell Biochem 90:492–501

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Friess H, Kleeff J, Korc M et al (1999) Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 16:281–290

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K, Hosotani R, Wada M et al (1998) Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. Eur J Cancer 34:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga AK, Marsh S, Murry DJ et al (2004) Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway. Pharmacogenomics J 4:307–314

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manteiga J, Molina-Arcas M, Casado FJ et al (2003) Nucleoside transporter profiles in human pancreatic cancer cells: role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clin Cancer Res 9:5000–5008

    PubMed  CAS  Google Scholar 

  • Giovannetti E, Del TM, Mey V et al (2006) Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res 66:3928–3935

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti E, Laan AC, Vasile E et al (2008) Correlation between cytidine deaminase genotype and gemcitabine deamination in blood samples. Nucleosides Nucleotides Nucleic Acids 27:720–725

    Article  PubMed  CAS  Google Scholar 

  • Grosch S, Tegeder I, Niederberger E et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:2742–2744

    PubMed  CAS  Google Scholar 

  • Grosch S, Maier TJ, Schiffmann S et al (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26:7508–7516

    Article  PubMed  CAS  Google Scholar 

  • Hayward RM, Kirk MJ, Sproull M et al (2008) Post-collection, pre-measurement variables affecting VEGF levels in urine biospecimens. J Cell Mol Med 12:343–350

    Article  PubMed  Google Scholar 

  • Hess V, Glimelius B, Grawe P et al (2008) CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 9:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hong SM, Kelly D, Griffith M et al (2008) Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 21:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Hormbrey E, Gillespie P, Turner K et al (2002) A critical review of vascular endothelial growth factor (VEGF) analysis in peripheral blood: is the current literature meaningful? Clin Exp Metastasis 19:651–663

    Article  PubMed  CAS  Google Scholar 

  • Ikeda N, Adachi M, Taki T et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79:1553–1563

    Article  PubMed  CAS  Google Scholar 

  • Infante JR, Matsubayashi H, Sato N et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25:319–325

    Article  PubMed  Google Scholar 

  • Jacob K, Sollier C, Jabado N (2007) Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics 4:741–756

    Article  PubMed  CAS  Google Scholar 

  • Jimeno A, Amador ML, Kulesza P et al (2006) Assessment of celecoxib pharmacodynamics in pancreatic cancer. Mol Cancer Ther 5:3240–3247

    Article  PubMed  CAS  Google Scholar 

  • Jimeno A, Tan AC, Coffa J et al (2008) Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res 68:2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Juuti A, Louhimo J, Nordling S et al (2006) Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. J Clin Pathol 59:382–386

    Article  PubMed  CAS  Google Scholar 

  • Kang SP, Saif MW (2008) Pharmacogenomics and pancreatic cancer treatment. Optimizing current therapy and individualizing future therapy. JOP 9:251–266

    PubMed  Google Scholar 

  • Kesisis G, Broxterman H, Giaccone G (2007) Angiogenesis inhibitors. Drug selectivity and target specificity. Curr Pharm Des 13:2795–2809

    Article  PubMed  CAS  Google Scholar 

  • Kindler HL, Friberg G, Singh DA et al (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23:8033–8040

    Article  PubMed  CAS  Google Scholar 

  • Kindler HL, Niedzwiecki D, Hollis D et al (2007) A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): a preliminary analysis of Cancer and Leukemia Group B (CALGB). J Clin Oncol 25(June 20 Suppl):4508

    Google Scholar 

  • Ko AH, Dito E, Schillinger B et al (2008) A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable? Invest New Drugs 26:463–471

    Article  PubMed  CAS  Google Scholar 

  • Koliopanos A, Avgerinos C, Paraskeva C et al (2008) Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int 7:345–356

    PubMed  CAS  Google Scholar 

  • Kong G, Kim EK, Kim WS et al (2002) Role of cyclooxygenase-2 and inducible nitric oxide synthase in pancreatic cancer. J Gastroenterol Hepatol 17:914–921

    Article  PubMed  CAS  Google Scholar 

  • Kwon WS, Rha SY, Choi YH et al (2006) Ribonucleotide reductase M1 (RRM1) 2464G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet Genomics 16:429–438

    Article  PubMed  CAS  Google Scholar 

  • Lee MA, Park GS, Lee HJ et al (2005) Survivin expression and its clinical significance in pancreatic cancer. BMC Cancer 5:127

    Article  PubMed  CAS  Google Scholar 

  • Lemke AJ, Niehues SM, Hosten N et al (2004) Retrospective digital image fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions–a prospective study with 104 patients. J Nucl Med 45:1279–1286

    PubMed  Google Scholar 

  • Liang JJ, Kimchi ET, Staveley-O’Carroll KF et al (2009) Diagnostic and prognostic biomarkers in pancreatic carcinoma. Int J Clin Exp Pathol 2:1–10

    PubMed  Google Scholar 

  • Liao JD, Adsay NV, Khannani F et al (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676

    PubMed  CAS  Google Scholar 

  • Liu WS, Yan HJ, Qin RY et al (2008) siRNA Directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity. Dig Dis Sci 54:89–96

    Article  PubMed  CAS  Google Scholar 

  • Marshall J (2005) The role of bevacizumab as first-line therapy for colon cancer. Semin Oncol 32:S43–S47

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi H, Infante JR, Winter J et al (2007) Tumor COX-2 expression and prognosis of patients with resectable pancreatic cancer. Cancer Biol Ther 6:1569–1575

    Article  PubMed  Google Scholar 

  • Medicherla S, Li L, Ma JY et al (2007) Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Res 27:4149–4157

    PubMed  CAS  Google Scholar 

  • Merati K, Said SM, Andea A et al (2001) Expression of inflammatory modulator COX-2 in pancreatic ductal adenocarcinoma and its relationship to pathologic and clinical parameters. Am J Clin Oncol 24:447–452

    Article  PubMed  CAS  Google Scholar 

  • Mercier C, Raynal C, Dahan L et al (2007) Toxic death case in a patient undergoing gemcitabine-based chemotherapy in relation with cytidine deaminase downregulation. Pharmacogenet Genomics 17:841–844

    Article  PubMed  CAS  Google Scholar 

  • Middleton G, Ghaneh P, Costello E et al (2008) New treatment options for advanced pancreatic cancer. Expert Rev Gastroenterol Hepatol 2:673–696

    Article  PubMed  CAS  Google Scholar 

  • Miyake K, Yoshizumi T, Imura S et al (2008) Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas 36:e1–e9

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  PubMed  CAS  Google Scholar 

  • Motzer RJ, Basch E (2007) Targeted drugs for metastatic renal cell carcinoma. Lancet 370:2071–2073

    Article  PubMed  CAS  Google Scholar 

  • Moyer JD, Barbacci EG, Iwata KK et al (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:4838–4848

    PubMed  CAS  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Nakahira S, Nakamori S, Tsujie M et al (2007) Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 120:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Kawabe T, Isayama H et al (2008) CA 19-9 response as an early indicator of the effectiveness of gemcitabine in patients with advanced pancreatic cancer. Oncology 75:120–126

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Tanno S, Koizumi K et al (2007) Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer 96:457–463

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    Article  PubMed  CAS  Google Scholar 

  • Ohhashi S, Ohuchida K, Mizumoto K et al (2008) Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res 28:2205–2212

    PubMed  CAS  Google Scholar 

  • Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12:5277–5287

    Article  PubMed  CAS  Google Scholar 

  • Peng XH, Karna P, Cao Z et al (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem 281:25903–25914

    Article  PubMed  CAS  Google Scholar 

  • Robb AO, Mills NL, Smith IB et al (2008) Influence of menstrual cycle on circulating endothelial progenitor cells. Hum Reprod 24:619–625

    Article  PubMed  CAS  Google Scholar 

  • Rocha Lima CM, Savarese D, Bruckner H et al (2002) Irinotecan plus gemcitabine induces both radiographic and CA 19-9 tumor marker responses in patients with previously untreated advanced pancreatic cancer. J Clin Oncol 20:1182–1191

    Article  PubMed  Google Scholar 

  • Rubio-Viqueira B, Hidalgo M (2008) Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther 85:217–221

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Viqueira B, Jimeno A, Cusatis G et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661

    Article  PubMed  CAS  Google Scholar 

  • Saif MW (2008) Is there a standard of care for the management of advanced pancreatic cancer?. Highlights from the gastrointestinal cancers symposium. Orlando, FL, USA. January 25–27, 2008. JOP 9:91–98

    Google Scholar 

  • Sandler A (2007) Bevacizumab in non small cell lung cancer. Clin Cancer Res 13:s4613–s4616

    Article  PubMed  CAS  Google Scholar 

  • Sarela AI, Verbeke CS, Ramsdale J et al (2002) Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br J Cancer 86:886–892

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N, Maehara N et al (2003) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22:5021–5030

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Kaneko K, Hirota M et al (2001) Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 92:271–278

    Article  PubMed  CAS  Google Scholar 

  • Schonthal AH (2007) Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer 97:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Henke E, Roodhart JM et al (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14:263–273

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR et al (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  • Sirohi B, Smith K (2008) Bevacizumab in the treatment of breast cancer. Expert Rev Anticancer Ther 8:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Spratlin J, Sangha R, Glubrecht D et al (2004) The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 10:6956–6961

    Article  PubMed  CAS  Google Scholar 

  • Stephen RM, Gillies RJ (2007) Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res 24:1172–1185

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama E, Kaniwa N, Kim SR et al (2007) Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 25:32–42

    Article  PubMed  CAS  Google Scholar 

  • Sun HC, Qiu ZJ, Liu J et al (2007) Expression of hypoxia-inducible factor-1 alpha and associated proteins in pancreatic ductal adenocarcinoma and their impact on prognosis. Int J Oncol 30:1359–1367

    PubMed  CAS  Google Scholar 

  • Tsuji K, Yang M, Jiang P et al (2006) Common bile duct injection as a novel method for establishing red fluorescent protein (RFP)-expressing human pancreatic cancer in nude mice. JOP 7:193–199

    PubMed  Google Scholar 

  • Vardeny O, Solomon SD (2008) Cyclooxygenase-2 inhibitors, nonsteroidal anti-inflammatory drugs, and cardiovascular risk. Cardiol Clin 26:589–601

    Article  PubMed  Google Scholar 

  • Vervenne WBJ, Humblet Y, Gill S et al (2008) A randomized, double-blind, placebo (P) controlled, multicenter phase III trial to evaluate the efficacy and safety of adding Bevacizumab (B) to erlotinib (E) and gemcitabine (G) in patients (pts) with metastatic pancreatic cancer. J Clin Oncol 26(May 20 Suppl):4507

    Google Scholar 

  • Von Hoff D, Borad M, Ramanathan R et al (2008) Promising clinical activity of a NAB paclitaxel plus gemcitabine combination in a disease-specific phase I trial in patients with advanced pancreatic cancer. Proc AACR Meeting:4179

    Google Scholar 

  • Wei H, Wang C, Chen L (2006) Proliferating cell nuclear antigen, survivin, and CD34 expressions in pancreatic cancer and their correlation with hypoxia-inducible factor 1alpha. Pancreas 32:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wobser M, Keikavoussi P, Kunzmann V et al (2006) Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother 55:1294–1298

    Article  PubMed  CAS  Google Scholar 

  • Wong D, Ko AH, Hwang J et al (2008) Serum CA 19-9 decline compared to radiographic response as a surrogate for clinical outcomes in patients with metastatic pancreatic cancer receiving chemotherapy. Pancreas 37:269–274

    Article  PubMed  Google Scholar 

  • Yamamoto H, Ngan CY, Monden M (2008) Cancer cells survive with survivin. Cancer Sci 99:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Yip-Schneider MT, Barnard DS, Billings SD et al (2000) Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 21:139–146

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda F. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baker, A., Dragovich, T. (2010). The Development of Pharmacodynamic Endpoint Models for Evaluation of Therapeutics in Pancreatic Cancer. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_14

Download citation

Publish with us

Policies and ethics