Skip to main content

Applications of Antibody-Lectin Sandwich Arrays (ALSA) to Pancreatic Cancer Diagnostics and Drug Discovery

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer
  • 695 Accesses

Abstract

A growing body of research in recent years is establishing the importance of glycosylation in cancer. Several types of cancer, especially epithelial carcinomas such as pancreatic cancer, commonly display particular carbohydrate alterations that have potential functional roles in cancer progression. New analytical tools are providing enhanced opportunities for studying glycans in cancer. One such tool is the antibody-lectin sandwich array (ALSA). ALSA complements existing glycobiology methods by offering a unique set of capabilities, such as reproducible detection of glycans on specific proteins, sensitive detection directly from biological samples, multiplexed analysis of both core protein and glycan levels, and low-volume, high-throughput sample processing. Using this tool, one may characterize glycan variation in populations, identify glycan changes on specific proteins in model systems, or characterize protein carriers of specific glycans. These types of experiments will be especially useful in pancreatic cancer research in studies to develop biomarkers and to define therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper J (2001) Searching for medicine’s sweet spot. Science 291:2338–2343

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  • Andrianifahanana M, Moniaux N, Batra SK (2006) Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta 1765:189–222

    CAS  PubMed  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    CAS  PubMed  Google Scholar 

  • Babiker AA, Nilsson B, Ronquist G et al (2005) Transfer of functional prostasomal CD59 of metastatic prostatic cancer cell origin protects cells against complement attack. Prostate 62:105–114

    Article  CAS  PubMed  Google Scholar 

  • Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R–53R

    Article  CAS  PubMed  Google Scholar 

  • Biancone L, Araki M, Araki K et al (1996) Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 183:581–587

    Article  CAS  PubMed  Google Scholar 

  • Blixt O, Head S, Mondala T et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101:17033–17038

    Article  CAS  PubMed  Google Scholar 

  • Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12:616–623

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I (2000) O-linked chain glycosyltransferases. Methods Mol Biol 125:273–293

    CAS  PubMed  Google Scholar 

  • Brockhausen I (2006) Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 7:599–604

    Article  CAS  PubMed  Google Scholar 

  • Brown JR, Fuster MM, Li R et al (2006) A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clin Cancer Res 12:2894–2901

    Article  CAS  PubMed  Google Scholar 

  • Burchell JM, Mungul A, Taylor-Papadimitriou J (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6:355–364

    Article  CAS  PubMed  Google Scholar 

  • Cabrera PV, Amano M, Mitoma J et al (2006) Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108:2399–2406

    Article  CAS  PubMed  Google Scholar 

  • Campbell BJ, Finnie IA, Hounsell EF et al (1995) Direct demonstration of increased expression of Thomsen−Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest 95:571–576

    Article  CAS  PubMed  Google Scholar 

  • Campbell BJ, Yu LG, Rhodes JM (2001) Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj J 18:851–858

    Article  CAS  PubMed  Google Scholar 

  • Chen S, LaRoche T, Hamelinck D et al (2007) Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods 4:437–444

    Article  CAS  PubMed  Google Scholar 

  • Chiricolo M, Malagolini N, Bonfiglioli S et al (2006) Phenotypic changes induced by expression of beta-galactoside alpha2,6 sialyltransferase I in the human colon cancer cell line SW948. Glycobiology 16:146–154

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    CAS  PubMed  Google Scholar 

  • Dabelsteen E, Gao S (2005) ABO blood-group antigens in oral cancer. J Dent Res 84:21–28

    Article  CAS  PubMed  Google Scholar 

  • Dall’Olio F, Chiricolo M (2001) Sialyltransferases in cancer. Glycoconj J 18:841–850

    Article  PubMed  Google Scholar 

  • Dalziel M, Whitehouse C, McFarlane I et al (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276:11007–11015

    Article  CAS  PubMed  Google Scholar 

  • Demetriou M, Granovsky M, Quaggin S et al (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW (1986) Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res 46:5131–5136

    CAS  PubMed  Google Scholar 

  • Dennis J, Waller C, Timpl R et al (1982) Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300:274–276

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34

    CAS  PubMed  Google Scholar 

  • Dorling PR, Huxtable CR, Colegate SM (1980) Inhibition of lysosomal alpha-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem J 191:649–651

    CAS  PubMed  Google Scholar 

  • Dricu A, Carlberg M, Wang M et al (1997) Inhibition of N-linked glycosylation using tunicamycin causes cell death in malignant cells: role of down-regulation of the insulin-like growth factor 1 receptor in induction of apoptosis. Cancer Res 57:543–548

    CAS  PubMed  Google Scholar 

  • Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation−potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1987) Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56:497–534

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13:431–437

    Article  CAS  PubMed  Google Scholar 

  • Ferrone CR, Finkelstein DM, Thayer SP et al (2006) Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 24:2897–2902

    Article  CAS  PubMed  Google Scholar 

  • Forrester S, Kuick R, Hung KE et al (2007) Low-volume, high-throughput sandwich immunoassays for profiling plasma proteins in mice: identification of early-stage systemic inflammation in a mouse model of intestinal cancer. Molecular Oncology 1:216–225

    Article  PubMed  Google Scholar 

  • Fukuda M (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56:2237–2244

    CAS  PubMed  Google Scholar 

  • Fukushima K, Hirota M, Terasaki PI et al (1984) Characterization of sialosylated Lewisx as a new tumor-associated antigen. Cancer Res 44:5279–5285

    CAS  PubMed  Google Scholar 

  • Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

    Article  CAS  PubMed  Google Scholar 

  • Fuster MM, Brown JR, Wang L et al (2003) A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res 63:2775–2781

    CAS  PubMed  Google Scholar 

  • Gao WM, Kuick R, Orchekowski RP et al (2005) Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5:110

    Article  PubMed  CAS  Google Scholar 

  • Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607–634

    Article  CAS  PubMed  Google Scholar 

  • Gilewski T, Ragupathi G, Bhuta S et al (2001) Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc Natl Acad Sci USA 98:3270–3275

    Article  CAS  PubMed  Google Scholar 

  • Gilewski TA, Ragupathi G, Dickler M et al (2007) Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin Cancer Res 13:2977–2985

    Article  CAS  PubMed  Google Scholar 

  • Glinsky VV, Glinsky GV, Rittenhouse-Olson K et al (2001) The role of Thomsen−Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857

    CAS  PubMed  Google Scholar 

  • Goetz JA, Mechref Y, Kang P et al (2008) Glycomic profiling of invasive and non-invasive breast cancer cells. Glycoconj J 26:117–131

    Article  PubMed  CAS  Google Scholar 

  • Goonetilleke KS, Siriwardena AK (2007) Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 33:266–270

    Article  CAS  PubMed  Google Scholar 

  • Gourevitch MM, von Mensdorff-Pouilly S, Litvinov SV et al (1995) Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients. Br J Cancer 72:934–938

    CAS  PubMed  Google Scholar 

  • Granovsky M, Fata J, Pawling J et al (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312

    Article  CAS  PubMed  Google Scholar 

  • Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2:Research0004

    Google Scholar 

  • Hagisawa S, Ohyama C, Takahashi T et al (2005) Expression of core 2 beta1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 15:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  CAS  PubMed  Google Scholar 

  • Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 13:5021–5034

    Article  CAS  PubMed  Google Scholar 

  • Hanisch FG, Hanski C, Hasegawa A (1992) Sialyl Lewis(x) antigen as defined by monoclonal antibody AM-3 is a marker of dysplasia in the colonic adenoma-carcinoma sequence. Cancer Res 52:3138–3144

    CAS  PubMed  Google Scholar 

  • Higashi N, Fujioka K, Denda-Nagai K et al (2002) The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J Biol Chem 277:20686–20693

    Article  CAS  PubMed  Google Scholar 

  • Hoff SD, Matsushita Y, Ota DM et al (1989) Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. Cancer Res 49:6883–6888

    CAS  PubMed  Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60

    Article  CAS  PubMed  Google Scholar 

  • Houzelstein D, Goncalves IR, Fadden AJ et al (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Huang MC, Chen HY, Huang HC et al (2006) C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene 25:3267–3276

    Article  CAS  PubMed  Google Scholar 

  • Humphries MJ, Matsumoto K, White SL et al (1986) Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res 46:5215–5222

    CAS  PubMed  Google Scholar 

  • Irimura T, Gonzalez R, Nicolson GL (1981) Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Cancer Res 41:3411–3418

    CAS  PubMed  Google Scholar 

  • Iwai K, Ishikura H, Kaji M et al (1993) Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium. Int J Cancer 54:972–977

    Article  CAS  PubMed  Google Scholar 

  • Izawa M, Kumamoto K, Mitsuoka C et al (2000) Expression of sialyl 6-sulfo Lewis X is inversely correlated with conventional sialyl Lewis X expression in human colorectal cancer. Cancer Res 60:1410–1416

    CAS  PubMed  Google Scholar 

  • Johnsen AK, Templeton DJ, Sy M et al (1999) Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 163:4224–4231

    CAS  PubMed  Google Scholar 

  • Kakiuchi Y, Tsuji S, Tsujii M et al (2002) Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis. Cancer Res 62:1567–1572

    CAS  PubMed  Google Scholar 

  • Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14:577–584

    Article  CAS  PubMed  Google Scholar 

  • Kawarada Y, Ishikura H, Kishimoto T et al (2000) The role of sialylated Lewis antigens on hematogenous metastases of human pancreas carcinoma cell lines in vivo. Pathol Res Pract 196:259–263

    CAS  PubMed  Google Scholar 

  • Kikuchi J, Shinohara H, Nonomura C et al (2005) Not core 2 beta 1,6-N-acetylglucosaminyltransferase-2 or -3 but -1 regulates sialyl-Lewis x expression in human precursor B cells. Glycobiology 15:271–280

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Itzkowitz SH, Yuan M et al (1988) Lex and Ley antigen expression in human pancreatic cancer. Cancer Res 48:475–482

    CAS  PubMed  Google Scholar 

  • Kim YS, Gum J Jr, Brockhausen I (1996) Mucin glycoproteins in neoplasia. Glycoconj J 13:693–707

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T, Ishikura H, Kimura C et al (1996) Phenotypes correlating to metastatic properties of pancreas adenocarcinoma in vivo: the importance of surface sialyl Lewis(a) antigen. Int J Cancer 69:290–294

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T, Clausen H, Hirohashi S et al (1988) Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2—6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 48:2214–2220

    CAS  PubMed  Google Scholar 

  • Kobata A, Amano J (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83:429–439

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Nakagawa H, Takahashi M et al (2007) N-glycan alterations are associated with drug resistance in human hepatocellular carcinoma. Mol Cancer 6:32

    Article  PubMed  CAS  Google Scholar 

  • Kuno A, Uchiyama N, Koseki-Kuno S et al (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–856

    Article  CAS  PubMed  Google Scholar 

  • Lagana A, Goetz JG, Cheung P et al (2006) Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol 26:3181–3193

    Article  CAS  PubMed  Google Scholar 

  • Lau KS, Dennis JW (2008) N-Glycans in cancer progression. Glycobiology 18:750–760

    Article  CAS  PubMed  Google Scholar 

  • Lau KS, Partridge EA, Grigorian A et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

    Article  CAS  PubMed  Google Scholar 

  • Le Pendu J, Marionneau S, Cailleau-Thomas A et al (2001) ABH and Lewis histo-blood group antigens in cancer. APMIS 109:9–31

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Ro JY, Sahin AA et al (1991) Expression of blood-group antigen A – a favorable prognostic factor in non-small-cell lung cancer. N Engl J Med 324:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Liang PH, Wu CY, Greenberg WA et al (2008) Glycan arrays: biological and medical applications. Curr Opin Chem Biol 12:86–92

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KO, Burchell J, Kudryashov V et al (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 271:33325–33334

    Article  CAS  PubMed  Google Scholar 

  • Lowe JB (2002) Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev 186:19–36

    Article  CAS  PubMed  Google Scholar 

  • Maemura K, Fukuda M (1992) Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J Biol Chem 267:24379–24386

    CAS  PubMed  Google Scholar 

  • Magnani JL, Nilsson B, Brockhaus M et al (1982) A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 257:14365–14369

    CAS  PubMed  Google Scholar 

  • Magnani JL, Steplewski Z, Koprowski H et al (1983) Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 43:5489–5492

    CAS  PubMed  Google Scholar 

  • Martensson S, Bigler SA, Brown M et al (1995) Sialyl-Lewis(x) and related carbohydrate antigens in the prostate. Hum Pathol 26:735–739

    Article  CAS  PubMed  Google Scholar 

  • McEver RP (1997) Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj J 14:585–591

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn R, Cheung P, Berger L et al (2007) Complex N-glycan and metabolic control in tumor cells. Cancer Res 67:9771–9780

    Article  CAS  PubMed  Google Scholar 

  • Mita Y, Aoyagi Y, Suda T et al (2000) Plasma fucosyltransferase activity in patients with hepatocellular carcinoma, with special reference to correlation with fucosylated species of alpha-fetoprotein. J Hepatol 32:946–954

    Article  CAS  PubMed  Google Scholar 

  • Miyake M, Taki T, Hitomi S et al (1992) Correlation of expression of H/Le(y)/Le(b) antigens with survival in patients with carcinoma of the lung. N Engl J Med 327:14–18

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi E, Nakano M (2008) Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8:3257–3262

    Article  CAS  PubMed  Google Scholar 

  • Molinari M (2007) N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol 3:313–320

    Article  CAS  PubMed  Google Scholar 

  • Moniaux N, Andrianifahanana M, Brand RE et al (2004) Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer 91:1633–1638

    CAS  PubMed  Google Scholar 

  • Naitoh A, Aoyagi Y, Asakura H (1999) Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 14:436–445

    Article  CAS  PubMed  Google Scholar 

  • Nguyen JT, Evans DP, Galvan M et al (2001) CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol 167:5697–5707

    CAS  PubMed  Google Scholar 

  • Nuck R, Paul C, Wieland B et al (1993) Comparative study of high-mannose-type oligosaccharides in membrane glycoproteins of rat hepatocytes and different rat hepatoma cell lines. Eur J Biochem 216:215–221

    Article  CAS  PubMed  Google Scholar 

  • Ohm JE, Carbone DP (2002) Immune dysfunction in cancer patients. Oncology (Huntingt) 16:11–18

    Google Scholar 

  • Ohyama C (2008) Glycosylation in bladder cancer. Int J Clin Oncol 13:308–313

    Article  CAS  PubMed  Google Scholar 

  • Ohyama C, Tsuboi S, Fukuda M (1999) Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 18:1516–1525

    Article  CAS  PubMed  Google Scholar 

  • Okuyama N, Ide Y, Nakano M et al (2005) Fucosylated haptoglobin is a novel marker for pancreatic cancer: A detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer 118:2803–2808

    Article  CAS  Google Scholar 

  • Orchekowski R, Hamelinck D, Li L et al (2005) Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 65:11193–11202

    Article  CAS  PubMed  Google Scholar 

  • Orntoft TF, Meldgaard P, Pedersen B et al (1996) The blood group ABO gene transcript is down-regulated in human bladder tumors and growth-stimulated urothelial cell lines. Cancer Res 56:1031–1036

    CAS  PubMed  Google Scholar 

  • Osako M, Yonezawa S, Siddiki B et al (1993) Immunohistochemical study of mucin carbohydrates and core proteins in human pancreatic tumors. Cancer 71:2191–2199

    Article  CAS  PubMed  Google Scholar 

  • Partridge EA, Le Roy C, Di Guglielmo GM et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    Article  CAS  PubMed  Google Scholar 

  • Pearlstein E, Salk PL, Yogeeswaran G et al (1980) Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci USA 77:4336–4339

    Article  CAS  PubMed  Google Scholar 

  • Peracaula R, Tabares G, Royle L et al (2003) Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13:457–470

    Article  CAS  PubMed  Google Scholar 

  • Pilobello KT, Krishnamoorthy L, Slawek D et al (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6:985–989

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan P, Lin MF, Cheng PW (2008) Elevated expression of L-selectin ligand in lymph node-derived human prostate cancer cells correlates with increased tumorigenicity. Glycoconj J 26:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ragupathi G, Gathuru J, Livingston P (2005) Antibody inducing polyvalent cancer vaccines. Cancer Treat Res 123:157–180

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Raguram S, Venkataraman G et al (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2:817–824

    Article  CAS  PubMed  Google Scholar 

  • Ryder SD, Smith JA, Rhodes JM (1992) Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J Natl Cancer Inst 84:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Saeland E, van Vliet SJ, Backstrom M et al (2007) The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother 56:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Nishikawa A, Gu J et al (1994) cDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V+. Biochem Biophys Res Commun 198:318–327

    Article  CAS  PubMed  Google Scholar 

  • Samak R, Edelstein R, Israel L (1982) Immunosuppressive effect of acute-phase reactant proteins in vitro and its relevance to cancer. Cancer Immunol Immunother 13:38–43

    Article  CAS  PubMed  Google Scholar 

  • Satomura Y, Sawabu N, Takemori Y et al (1991) Expression of various sialylated carbohydrate antigens in malignant and nonmalignant pancreatic tissues. Pancreas 6:448–458

    Article  CAS  PubMed  Google Scholar 

  • Saul R, Molyneux RJ and Elbein AD (1984) Studies on the mechanism of castanospermine inhibition of alpha- and beta-glucosidases. Arch Biochem Biophys 230:668–675

    Article  CAS  PubMed  Google Scholar 

  • Schachter H and Brockhausen I (1989) The biosynthesis of branched O-glycans. Symp Soc Exp Biol 43:1–26

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schuessler MH, Pintado S, Welt S et al (1991) Blood group and blood-group-related antigens in normal pancreas and pancreas cancer: enhanced expression of precursor type 1, Tn and sialyl-Tn in pancreas cancer. Int J Cancer 47:180–187

    Article  CAS  PubMed  Google Scholar 

  • Sewell R, Backstrom M, Dalziel M et al (2006) The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 281:3586–3594

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Katoh H, Yamashita F et al (1996) Comparison of carbohydrate structures of serum alpha-fetoprotein by sequential glycosidase digestion and lectin affinity electrophoresis. Clin Chim Acta 254:23–40

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira K, Nakayama J, Nakamura N et al (1997) Carcinoma-associated expression of core 2 beta-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression. Cancer Res 57:5201–5206

    CAS  PubMed  Google Scholar 

  • Siddiqui SF, Pawelek J, Handerson T et al (2005) Coexpression of beta1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 14:2517–2523

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Maitra A (2007) Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology 7:9–19

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Subramanian S, Rhodes JM et al (2006) Peanut lectin stimulates proliferation of colon cancer cells by interaction with glycosylated CD44v6 isoforms and consequential activation of c-Met and MAPK: functional implications for disease-associated glycosylation changes. Glycobiology 16:594–601

    Article  CAS  PubMed  Google Scholar 

  • Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75:594–602

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Oda T, Hasebe T et al (2001) Overexpression of sialyl Lewis x antigen is associated with formation of extratumoral venous invasion and predicts postoperative development of massive hepatic metastasis in cases with pancreatic ductal adenocarcinoma. Pathobiology 69:127–135

    Article  CAS  PubMed  Google Scholar 

  • Tang DG, Honn KV (1994) Adhesion molecules and tumor metastasis: an update. Invasion Metastasis 14:109–122

    CAS  PubMed  Google Scholar 

  • Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780:546–563

    CAS  PubMed  Google Scholar 

  • Taylor ME, Drickamer K (2007) Paradigms for glycan-binding receptors in cell adhesion. Curr Opin Cell Biol 19:572–577

    Article  CAS  PubMed  Google Scholar 

  • Thompson S, Cantwell BM, Cornell C et al (1991) Abnormally-fucosylated haptoglobin: a cancer marker for tumour burden but not gross liver metastasis. Br J Cancer 64:386–390

    CAS  PubMed  Google Scholar 

  • Thompson S, Guthrie D, Turner GA (1988) Fucosylated forms of alpha-1-antitrypsin that predict unresponsiveness to chemotherapy in ovarian cancer. Br J Cancer 58:589–593

    CAS  PubMed  Google Scholar 

  • Thompson S, Stappenbeck R, Turner GA (1989) A multiwell lectin-binding assay using lotus tetragonolobus for measuring different glycosylated forms of haptoglobin. Clin Chim Acta 180:277–284

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela HF, Pace KE, Cabrera PV et al (2007) O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 67:6155–6162

    Article  CAS  PubMed  Google Scholar 

  • van Dijk W, Havenaar EC, Brinkman-van der Linden EC (1995) Alpha 1-acid glycoprotein (orosomucoid): pathophysiological changes in glycosylation in relation to its function. Glycoconj J 12:227–233

    Article  CAS  PubMed  Google Scholar 

  • van Vliet SJ, van Liempt E, Geijtenbeek TB et al (2006) Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets. Immunobiology 211:577–585

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Cummings R, Esko J et al (1999). Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Wolf MF, Ludwig A, Fritz P et al (1988) Increased expression of Thomsen−Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol 9:190–194

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Easton R, Panico M et al (2003) Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem 278:28619–28634

    Article  CAS  Google Scholar 

  • Xia L, Ju T, Westmuckett A et al (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164:451–459

    Article  CAS  PubMed  Google Scholar 

  • Yeo CJ, Cameron JL, Lillemoe KD et al (1995) Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg 221:721–731; discussion 731–723

    CAS  Google Scholar 

  • Yogeeswaran G, Salk PL (1981) Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212:1514–1516

    Article  CAS  PubMed  Google Scholar 

  • Yu LG (2007) The oncofetal Thomsen−Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 24:411–420

    Article  CAS  PubMed  Google Scholar 

  • Yu LG, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with Thomsen−Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282:773–781

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Baeckstrom D, Brevinge H et al (1996) Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J Cell Biochem 60:538–549

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Sikut R, Hansson GC (1997) A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol 176:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nakayama J, Ohyama C et al (2002) Sialyl Lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin. Cancer Res 62:4194–4198

    CAS  PubMed  Google Scholar 

  • Zhao J, Patwa TH, Qiu W et al (2007) Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res 6:1864–1874

    Article  CAS  PubMed  Google Scholar 

  • Zhao YY, Takahashi M, Gu JG et al (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99:1304–1310

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Peelen D and Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the NCI (4R33CA122890) and the Van Andel Institute for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Haab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wu, YM., Haab, B. (2010). Applications of Antibody-Lectin Sandwich Arrays (ALSA) to Pancreatic Cancer Diagnostics and Drug Discovery. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_13

Download citation

Publish with us

Policies and ethics