Skip to main content

Methylation Detection and Epigenomics in Pancreatic Cancer

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer
  • 698 Accesses

Abstract

Pancreatic cancer has both genetic and epigenetic underlying causes. The importance of epigenetic alterations in the formation and maintenance of malignant tumors has become apparent in the last decade, with accumulating evidence suggesting this is probably the most common clonal aberration in human neoplasia. Identifying epigenetic alterations in pancreatic cancer has not only enhanced our understanding of pancreatic cancer biology, but has also opened up avenues for the development of early detection and novel therapeutic strategies.

In this chapter, an overview of the current literature on epigenetic alterations found in pancreatic cancer is presented and discussed in the light of potential therapeutic applicability as well as pointing out possible future directions of studies combining global genetic and epigenetic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Toyota M, Suzuki H et al (2005) Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40:504–510

    Article  PubMed  CAS  Google Scholar 

  • Aguirre AJ, Bardeesy N, Sinha M et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  PubMed  CAS  Google Scholar 

  • Aguirre AJ, Brennan C, Bailey G et al (2004) High-resolution characterization of the pancreatic adenocarcinoma genome. Proc Natl Acad Sci USA 101:9067–9072

    Article  PubMed  CAS  Google Scholar 

  • Akada M, Crnogorac-Jurcevic T, Lattimore S et al (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11:3094–3101

    Article  PubMed  CAS  Google Scholar 

  • Ammerpohl O, Trauzold A, Schniewind B et al (2007) Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 96:73–81

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Yoshida T, Sugimura T et al (1995) Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 55:3810–3816

    PubMed  CAS  Google Scholar 

  • Arnold NB, Arkus N, Gunn J et al (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13:18–26

    Article  PubMed  CAS  Google Scholar 

  • Babushok DV, Ostertag EM, Kazazian HH, Jr. (2007) Current topics in genome evolution: molecular mechanisms of new gene formation. Cell Mol Life Sci 64:542–554

    Article  PubMed  CAS  Google Scholar 

  • Badal V, Chuang LS, Tan EH et al (2003) CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J Virol 77:6227–6234

    Article  PubMed  Google Scholar 

  • Bai J, Demirjian A, Sui J et al (2006) Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun 348:1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Bardeesy N, Aguirre AJ, Chu GC et al (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103:5947–5952

    Article  PubMed  CAS  Google Scholar 

  • Bardeesy N, Sharpless NE (2006) RAS unplugged: negative feedback and oncogene-induced senescence. Cancer Cell 10:451–453

    Article  PubMed  CAS  Google Scholar 

  • Bastian PJ, Palapattu GS, Lin X et al (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11:4037–4043

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB, Fearon ER, Vogelstein B et al (1987) Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies. Blood 70:412–417

    PubMed  CAS  Google Scholar 

  • Berman DM, Karhadkar SS, Maitra A et al (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Boyes J, Byfield P, Nakatani Y et al (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598

    Article  PubMed  CAS  Google Scholar 

  • Bracken AP, Pasini D, Capra M et al (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  • Buyse IM, Shao G, Huang S (1995) The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A protein. Proc Natl Acad Sci USA 92:4467–4471

    Article  PubMed  CAS  Google Scholar 

  • Caldas C, Hahn SA, da Costa LT et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32

    Article  PubMed  CAS  Google Scholar 

  • Caldas C, Kern SE (1995) K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol 18:1–6

    PubMed  CAS  Google Scholar 

  • Chadwick RB, Jiang GL, Bennington GA et al (2000) Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc Natl Acad Sci USA 97:2662–2667

    Article  PubMed  CAS  Google Scholar 

  • Chen RZ, Pettersson U, Beard C et al (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  PubMed  CAS  Google Scholar 

  • Cho B, Lee H, Jeong S et al (2003) Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem Biophys Res Commun 307:52–63

    Article  PubMed  CAS  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR et al (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360

    Article  PubMed  CAS  Google Scholar 

  • Cooper DN, Gerber-Huber S (1985) DNA methylation and CpG suppression. Cell Differ 17:199–205

    Article  PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ et al (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  PubMed  CAS  Google Scholar 

  • D'Alessio AC, Szyf M (2006) Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 84:463–476

    Article  PubMed  CAS  Google Scholar 

  • de Bono JS, Kristeleit R, Tolcher A et al (2008) Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res 14:6663–6673

    Google Scholar 

  • Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21:2726–2735

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Woods CB, Yu MC et al (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25:2636–2645

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Sanchez C, Shao C et al (2008) ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 41:253–271

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16 Spec No 1:R50–59

    Google Scholar 

  • Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Feldmann G, Maitra A (2008) Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn 10:111–122

    Article  PubMed  CAS  Google Scholar 

  • Feldmann G, Maitra A (2009) Molecular pathology of precursor lesions of pancreatic cancer: pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN). In: Neoptolemos JP et al (eds) Pancreatic Cancer. New York, Springer

    Google Scholar 

  • Feldmann G, Beaty R, Hruban RH et al (2007a) Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 14:224–232

    Article  Google Scholar 

  • Feldmann G, Dhara S, Fendrich V et al (2007b) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67:2187–2196

    Article  CAS  Google Scholar 

  • Feldmann G, Habbe N, Dhara S et al (2008) Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 57:1420–1430

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E et al (2005) Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 7:39–49

    Article  PubMed  CAS  Google Scholar 

  • Foss CA, Fox JJ, Feldmann G et al (2007) Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer. Mol Imaging 6:131–139

    PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  PubMed  CAS  Google Scholar 

  • Fu B, Guo M, Wang S et al (2007) Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types. Cancer Biol Ther 6:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara K, Fujimoto N, Tabata M et al (2005) Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 11:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • Fukushima N, Sato N, Ueki T et al (2002) Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol 160:1573–1581

    PubMed  CAS  Google Scholar 

  • Fukushima N, Walter KM, Uek T et al (2003) Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther 2:78–83

    PubMed  Google Scholar 

  • Gama-Sosa MA, Slagel VA, Trewyn RW et al (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cao M, O'Sullivan R, Peters AH et al (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36:94–99

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ (2005) Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14 Spec No 1:R85–R92

    Google Scholar 

  • Goessl C, Muller M, Miller K (2000) Methylation-specific PCR (MSP) for detection of tumour DNA in the blood plasma and serum of patients with prostate cancer. Prostate Cancer Prostatic Dis 3:S17

    Google Scholar 

  • Goggins M, Offerhaus GJ, Hilgers W et al (1998) Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol 152:1501–1507

    PubMed  CAS  Google Scholar 

  • Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  PubMed  CAS  Google Scholar 

  • Gray SG, Ekstrom TJ (2001) The human histone deacetylase family. Exp Cell Res 262:75–83

    Article  PubMed  CAS  Google Scholar 

  • Greger V, Passarge E, Hopping W et al (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  PubMed  CAS  Google Scholar 

  • Habbe N, Shi G, Meguid RA et al (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA 105:18913–18918

    Article  PubMed  CAS  Google Scholar 

  • Haefner M, Bluethner T, Niederhagen M et al (2008) Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors. World J Gastroenterol 14:3681–3692

    Article  PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  • Han H, Bearss DJ, Browne LW et al (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896

    PubMed  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  • Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Shino Y, Saito T et al (2002) Dominant negative MEKK1 inhibits survival of pancreatic cancer cells. Oncogene 21:5923–5928

    Article  PubMed  CAS  Google Scholar 

  • Hong SM, Kelly D, Griffith M et al (2008) Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol 21:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Hoque MO, Topaloglu O, Begum S et al (2005) Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol 23:6569–6575

    Article  PubMed  CAS  Google Scholar 

  • Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156:1821–1825

    PubMed  CAS  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586

    Article  PubMed  CAS  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28:977–987

    Article  PubMed  Google Scholar 

  • Hruban RH, Wilentz RE, Maitra A (2005) Identification and analysis of precursors to invasive pancreatic cancer. Methods Mol Med 103:1–13

    PubMed  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J et al (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106

    Article  PubMed  CAS  Google Scholar 

  • Hulst SLP (1905) Zur Kenntnis der Genese des Adenokarzinoms und Karzinoms des Pankreas. Virchows Arch 180:288–316

    Article  Google Scholar 

  • Hutchings IA, Tierney RJ, Kelly GL et al (2006) Methylation status of the Epstein-Barr virus (EBV) BamHI W latent cycle promoter and promoter activity: analysis with novel EBV-positive Burkitt and lymphoblastoid cell lines. J Virol 80:10700–10711

    Article  PubMed  CAS  Google Scholar 

  • Iacobuzio-Donahue CA (2009) Epigenetic changes in cancer. Annu Rev Pathol 4:229–249

    CAS  Google Scholar 

  • Ionov Y, Nowak N, Perucho M et al (2004) Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability. Oncogene 23:639–645

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Barnes PJ, Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20:6891–6903

    Article  PubMed  CAS  Google Scholar 

  • Ivanov GS, Ivanova T, Kurash J et al (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27:6756–6769

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Takahashi C, Oh J et al (2000) Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogenes. FEBS Lett 481:31–36

    Article  PubMed  CAS  Google Scholar 

  • Jaju RJ, Fidler C, Haas OA et al (2001) A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98:1264–1267

    CAS  Google Scholar 

  • Jansen M, Fukushima N, Rosty C et al (2002) Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1:293–296

    PubMed  CAS  Google Scholar 

  • Jenuwein T (2006) The epigenetic magic of histone lysine methylation. FEBS J 273:3121–3135

    Article  PubMed  CAS  Google Scholar 

  • Jiao L, Zhu J, Hassan MM et al (2007) K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas 34:55–62

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Udagawa K, Miyagi E et al (2001) Expression of serine proteinase inhibitor PP5/TFPI-2/MSPI decreases the invasive potential of human choriocarcinoma cells in vitro and in vivo. Gynecol Oncol 83:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem 236:864–875

    PubMed  CAS  Google Scholar 

  • Kell J (2007) Drug evaluation: MGCD-0103, a histone deacetylase inhibitor for the treatment of cancer. Curr Opin Investig Drugs 8:485–492

    PubMed  CAS  Google Scholar 

  • Khochbin S, Verdel A, Lemercier C et al (2001) Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162–166

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Geng L, Huang S (2003a) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63:7619–7623

    CAS  Google Scholar 

  • Kim SG, Wu TT, Lee JH et al (2003b) Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas. Mod Pathol 16:1086–1094

    Article  Google Scholar 

  • Kim SJ, Kang HS, Chang HL et al (2008) Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer. Oncol Rep 19:663–668

    PubMed  CAS  Google Scholar 

  • Kirmizis A, Bartley SM, Farnham PJ (2003) Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2:113–121

    PubMed  CAS  Google Scholar 

  • Kleer CG, Cao Q, Varambally S et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  PubMed  CAS  Google Scholar 

  • Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    Article  PubMed  CAS  Google Scholar 

  • Koorstra JB, Hustinx SR, Offerhaus GJ et al (2008) Pancreatic carcinogenesis. Pancreatology 8:110–125

    Article  PubMed  Google Scholar 

  • Kouskouti A, Scheer E, Staub A et al (2004) Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol Cell 14:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    PubMed  CAS  Google Scholar 

  • Leary RJ, Lin JC, Cummins J et al (2008) Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci USA 105:16224–16229

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9:639–649

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Kim JW, Kang GH et al (2006) DNA hypomethylation of CAGE promotors in squamous cell carcinoma of uterine cervix. Ann N Y Acad Sci 1091:218–224

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Lotterman C, Karikari C et al (2009) Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 (CDK6) expression in pancreatic cancer. Pancreatology 9:293–301

    Article  PubMed  CAS  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    Article  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci USA 94:2545–2550

    Article  PubMed  CAS  Google Scholar 

  • Li M, Bharadwaj U, Zhang R et al (2008) Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 7:286–296

    Article  PubMed  CAS  Google Scholar 

  • Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135

    Article  PubMed  CAS  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Li M, Tang Y et al (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Maitra A, Hruban RH (2008) Pancreatic cancer. Annu Rev Pathol 3:157–188

    Article  PubMed  CAS  Google Scholar 

  • Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16:902–912

    Article  PubMed  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  PubMed  CAS  Google Scholar 

  • Martin ST, Sato N, Dhara S et al (2005) Aberrant methylation of the Human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther 4:728–733

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ et al (2000) Regulation of E2F1 activity by acetylation. EMBO J 19:662–671

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi H, Sato N, Brune K et al (2005) Age- and disease-related methylation of multiple genes in nonneoplastic duodenum and in duodenal juice. Clin Cancer Res 11:573–583

    PubMed  CAS  Google Scholar 

  • Matsubayashi H, Canto M, Sato N et al (2006) DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res 66:1208–1217

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C et al (1995) p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9:650–662

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Ivarie R (1982) Asymmetrical distribution of CpG in an 'average' mammalian gene. Nucleic Acids Res 10:7865–7877

    Article  PubMed  CAS  Google Scholar 

  • Mok SC, Chan WY, Wong KK et al (1996) SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene 12:1895–1901

    PubMed  CAS  Google Scholar 

  • Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57:2140–2143

    PubMed  CAS  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R et al (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12:1565–1569

    PubMed  CAS  Google Scholar 

  • Nakata B, Wang YQ, Yashiro M et al (2002) Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res 8:2536–2540

    PubMed  CAS  Google Scholar 

  • Narayan A, Ji W, Zhang XY et al (1998) Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 77:833–838

    Article  PubMed  CAS  Google Scholar 

  • Neureiter D, Zopf S, Leu T et al (2007) Apoptosis, proliferation and differentiation patterns are influenced by Zebularine and SAHA in pancreatic cancer models. Scand J Gastroenterol 42:103–116

    Article  PubMed  CAS  Google Scholar 

  • Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–5346

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Omura N, Goggins M (2009) Epigenetics and epigenetic alterations in pancreatic cancer. Int J Clin Exp Pathol 2:310–326

    PubMed  CAS  Google Scholar 

  • Omura N, Li CP, Li A et al (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7:1146–1156

    PubMed  CAS  Google Scholar 

  • Ouaissi M, Sielezneff I, Silvestre R et al (2008) High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 15:2318–2328

    Article  PubMed  Google Scholar 

  • Ougolkov AV, Bilim VN, Billadeau DD (2008) Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res 14:6790–6796

    Article  PubMed  CAS  Google Scholar 

  • Parsi MA, Li A, Li CP et al (2008) DNA methylation alterations in endoscopic retrograde cholangiopancreatography brush samples of patients with suspected pancreaticobiliary disease. Clin Gastroenterol Hepatol 6:1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Perini G, Diolaiti D, Porro A et al (2005) In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA 102:12117–12122

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, O'Carroll D, Scherthan H et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Pogribny IP, Basnakian AG, Miller BJ et al (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901

    PubMed  CAS  Google Scholar 

  • Qu G, Dubeau L, Narayan A et al (1999a) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423:91–101

    CAS  Google Scholar 

  • Qu GZ, Grundy PE, Narayan A et al (1999b) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109:34–39

    Article  CAS  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T et al (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema JH, Peters DJ (2007) Rubinstein−Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med 9:1–16

    Article  PubMed  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E et al (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38:566–569

    Article  PubMed  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Portoso M, Mata J et al (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119:603–614

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Goggins M (2006) The role of epigenetic alterations in pancreatic cancer. J Hepatobiliary Pancreat Surg 13:286–295

    Article  PubMed  Google Scholar 

  • Sato N, Ueki T, Fukushima N et al (2002) Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 123:365–372

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N, Maehara N et al (2003a) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22:5021–5030

    Article  CAS  Google Scholar 

  • Sato N, Fukushima N, Maitra A et al (2003b) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63:3735–3742

    CAS  Google Scholar 

  • Sato N, Maitra A, Fukushima N et al (2003c) Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 63:4158–4166

    CAS  Google Scholar 

  • Sato N, Fukushima N, Matsubayashi H et al (2004) Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene 23:1531–1538

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Matsubayashi H, Abe T et al (2005a) Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res 11:4681–4688

    Article  CAS  Google Scholar 

  • Sato N, Matsubayashi H, Fukushima N et al (2005b) The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 4:70–76

    Article  CAS  Google Scholar 

  • Sato N, Parker AR, Fukushima N et al (2005c) Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene 24:850–858

    Article  CAS  Google Scholar 

  • Sato N, Fukushima N, Chang R et al (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548–565

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Shames DS, Gazdar AF et al (2007) A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2:327–343

    Article  PubMed  Google Scholar 

  • Sato N, Fukushima N, Hruban RH et al (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21:238–244

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Lemke N, Ge S et al (2002) Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Res 62:6270–6277

    PubMed  CAS  Google Scholar 

  • Schutte M, Hruban RH, Hedrick L et al (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530

    PubMed  CAS  Google Scholar 

  • Schutte M, Hruban RH, Geradts J et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57:3126–3130

    PubMed  CAS  Google Scholar 

  • Shames DS, Minna JD, Gazdar AF (2007) DNA methylation in health, disease, and cancer. Curr Mol Med 7:85–102

    Article  PubMed  CAS  Google Scholar 

  • Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8:829–833

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  Google Scholar 

  • Shiota K, Yanagimachi R (2002) Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation 69:162–166

    Article  PubMed  CAS  Google Scholar 

  • Sims RJ III, Millhouse S, Chen CF et al (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28:665–676

    Article  PubMed  CAS  Google Scholar 

  • Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  CAS  Google Scholar 

  • Skinner HG, Michaud DS, Giovannucci EL et al (2004) A prospective study of folate intake and the risk of pancreatic cancer in men and women. Am J Epidemiol 160:248–258

    Article  PubMed  Google Scholar 

  • Smith TF, Waterman MS, Sadler JR (1983) Statistical characterization of nucleic acid sequence functional domains. Nucleic Acids Res 11:2205–2220

    Article  PubMed  CAS  Google Scholar 

  • Steele-Perkins G, Fang W, Yang XH et al (2001) Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 15:2250–2262

    Article  PubMed  CAS  Google Scholar 

  • Swartz MN, Trautner TA, Kornberg A (1962) Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem 237:1961–1967

    PubMed  CAS  Google Scholar 

  • Tabu K, Sasai K, Kimura T et al (2008) Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 18:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Tan SH, Ida H, Lau QC et al (2007) Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep 18:1225–1230

    PubMed  CAS  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    Article  PubMed  CAS  Google Scholar 

  • Ting AH, Jair KW, Suzuki H et al (2004) CpG island hypermethylation is maintained in human colorectal cancer cells after RNAi-mediated depletion of DNMT1. Nat Genet 36:582–584

    Article  PubMed  CAS  Google Scholar 

  • Ting AH, Jair KW, Schuebel KE et al (2006a) Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer Res 66:729–735

    Article  CAS  Google Scholar 

  • Ting AH, McGarvey KM, Baylin SB (2006b) The cancer epigenome-components and functional correlates. Genes Dev 20:3215–3231

    Article  CAS  Google Scholar 

  • Tokumaru Y, Nomoto S, Jeronimo C et al (2003) Biallelic inactivation of the RIZ1 gene in human gastric cancer. Oncogene 22:6954–6958

    Article  PubMed  CAS  Google Scholar 

  • Tuck-Muller CM, Narayan A, Tsien F et al (2000) DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89:121–128

    Article  PubMed  CAS  Google Scholar 

  • Tykocinski ML, Max EE (1984) CG dinucleotide clusters in MHC genes and in 5′ demethylated genes. Nucleic Acids Res 12:4385–4396

    Article  PubMed  CAS  Google Scholar 

  • Ueki T, Toyota M, Sohn T et al (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60:1835–1839

    PubMed  CAS  Google Scholar 

  • Ueki T, Toyota M, Skinner H et al (2001) Identification and characterization of differentially methylated CpG islands in pancreatic carcinoma. Cancer Res 61:8540–8546

    PubMed  CAS  Google Scholar 

  • van der Put NM, Gabreels F, Stevens EM et al (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051

    Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  PubMed  CAS  Google Scholar 

  • Visser HP, Gunster MJ, Kluin-Nelemans HC et al (2001) The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 112:950–958

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  • Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13:26–34

    Article  PubMed  CAS  Google Scholar 

  • Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 13:363–372

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Ogawa Y, Itoh K et al (2008) Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Invest 88:48–57

    Article  PubMed  CAS  Google Scholar 

  • Wilentz RE, Geradts J, Maynard R et al (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58:4740–4744

    PubMed  CAS  Google Scholar 

  • Wilentz RE, Goggins M, Redston M et al (2000) Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: A newly described and characterized entity. Am J Pathol 156:1641–1651

    PubMed  CAS  Google Scholar 

  • Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Yamada N, Hamada T, Goto M et al (2006) MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer 119:1850–1857

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Itoh F, Nakamura H et al (2001) Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res 61:3139–3144

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feldmann, G., Maitra, A. (2010). Methylation Detection and Epigenomics in Pancreatic Cancer. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_10

Download citation

Publish with us

Policies and ethics