Skip to main content

Drug Evaluations in Pancreatic Cancer Culture Systems

  • Chapter
  • First Online:
Drug Discovery in Pancreatic Cancer
  • 741 Accesses

Abstract

Pancreatic cancer has proven to be one of the most difficult diseases to detect, diagnose, and treat due to both the location of the pancreas in the abdomen and the lack of overt symptoms before cancer dissemination. Thus, it is critical to have a variety of modeling systems that can be employed to evaluate drug responses/mechanisms while providing a relatively simple format for drug screening. Cell culture serves this purpose. In this context, it is necessary to review the available pancreatic cancer cell lines, culture techniques, predominant signaling pathways, and types of analyses that can be utilized to assess the effectiveness of drugs on pancreatic cancer cells, including aspects of pharmocotherapeutic strategies for the development of novel methodologies. Special consideration will be given to different signal transduction pathways like MAPK, JAK/STAT, PI3K/AKT, RTKs, VEGF, and NF-κB, which are involved in various aspects of pancreatic cancer development and progression, complete with a repertoire of chemical inhibition at several levels within a cascade. Ultimately, abrogation of these cell signals can be detected through measurable variables at the cellular level, including apoptosis, proliferation, altered cell phenotype, the ability to invade and/or metastasize, and changes in cell cycle parameters. Evaluation of drugs at this level can set the stage for future strategies as well as exploration of novel compounds that inhibit other vital cancer signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessi DR, Andjelkovic M et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    PubMed  CAS  Google Scholar 

  • Anderson IC, Mari SE et al (2000) The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res 60(2):269–272

    PubMed  CAS  Google Scholar 

  • Armstrong JW (1999) A review of high-throughput screening approaches for drug discovery. Am Biotechnol Lab 17(5):26–28

    Google Scholar 

  • Baker CH, Solorzano CC et al (2002) Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res 62(7):1996–2003

    PubMed  CAS  Google Scholar 

  • Barber MD, Fearon KC et al (1999) Relationship of serum levels of interleukin-6, soluble interleukin-6 receptor and tumour necrosis factor receptors to the acute-phase protein response in advanced pancreatic cancer. Clin Sci (Lond) 96(1):83–87

    Article  CAS  Google Scholar 

  • Barnett SF, Defeo-Jones D et al (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408

    Article  PubMed  CAS  Google Scholar 

  • Batra SK, Metzgar RS et al (1992) Expression of the human MUC1 mucin cDNA in a hamster pancreatic tumor cell line HP-1. Int J Pancreatol 12(3):271–283

    PubMed  CAS  Google Scholar 

  • Bednar F, Simeone DM (2009) Pancreatic cancer stem cells and relevance to cancer treatments. J Cell Biochem 107(1):40–45

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa A, Testa JR et al (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254(5029):274–277

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Chytil A et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851

    Article  PubMed  CAS  Google Scholar 

  • Biliran H Jr, Wang Y et al (2005) Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11(16):6075–6086

    Article  PubMed  CAS  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365

    Article  PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S, Taneja M et al (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97(14):7999–8004

    Article  PubMed  CAS  Google Scholar 

  • Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201(2):475–481

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H et al (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(1):95–105

    Article  PubMed  CAS  Google Scholar 

  • de la Tour D, Halvorsen T et al (2001) Beta-cell differentiation from a human pancreatic cell line in vitro and in vitro. Mol Endocrinol 15(3):476–483

    Article  Google Scholar 

  • De Lisle RC, Logsdon CD (1990) Pancreatic acinar cells in culture: expression of acinar and ductal antigens in a growth-related manner. Eur J Cell Biol 51(1):64–75

    PubMed  Google Scholar 

  • DeFeo-Jones D, Barnett SF et al (2005) Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 4(2):271–279

    PubMed  CAS  Google Scholar 

  • Dhillon N, Aggarwal BB et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Nemeth JA et al (2001) Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. Int J Cancer 93(4):507–515

    Article  PubMed  CAS  Google Scholar 

  • Dragovich T, Huberman M et al (2007) Erlotinib plus gemcitabine in patients with unresectable pancreatic cancer and other solid tumors: phase IB trial. Cancer Chemother Pharmacol 60(2):295–303

    Article  PubMed  CAS  Google Scholar 

  • Durkin AJ, Bloomston PM et al (2003) Defining the role of the epidermal growth factor receptor in pancreatic cancer grown in vitro. Am J Surg 186(5):431–436

    Article  PubMed  CAS  Google Scholar 

  • Efrat S, Linde S et al (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 85(23):9037–9041

    Article  PubMed  CAS  Google Scholar 

  • El-Rayes BF, Ali S et al (2008) Protein kinase C: a target for therapy in pancreatic cancer. Pancreas 36(4):346–352

    Article  PubMed  CAS  Google Scholar 

  • El Fitori J, Su Y et al (2007) PKC 412 small-molecule tyrosine kinase inhibitor: single-compound therapy for pancreatic cancer. Cancer 110(7):1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Meyers RE et al (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Sclabas GM et al (2003) Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 22(9):1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Fukushima N, Sato N et al (2003) Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer 89(2):338–343

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Duguid WP et al (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148(6):1763–1770

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Chick WL et al (1980) Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci USA 77(6):3519–3523

    Article  PubMed  CAS  Google Scholar 

  • Gleave M, Hsieh JT et al (1991) Acceleration of human prostate cancer growth in vitro by factors produced by prostate and bone fibroblasts. Cancer Res 51(14):3753–3761

    PubMed  CAS  Google Scholar 

  • Gmyr V, Kerr-Conte J et al (2001) Human pancreatic ductal cells: large-scale isolation and expansion. Cell Transplant 10(1):109–121

    PubMed  CAS  Google Scholar 

  • Greten FR, Weber CK et al (2002) Stat3 and NF-kappaB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 123(6):2052–2063

    Article  PubMed  CAS  Google Scholar 

  • Guttridge DC, Albanese C et al (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19(8):5785–5799

    PubMed  CAS  Google Scholar 

  • Hermann PC, Huber SL et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    Article  PubMed  CAS  Google Scholar 

  • Hiles ID, Otsu M et al (1992) Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70(3):419–429

    Article  PubMed  CAS  Google Scholar 

  • Hirota M, Egami H et al (1993) Production of scatter factor-like activity by a nitrosamine-induced pancreatic cancer cell line. Carcinogenesis 14(2):259–264

    Article  PubMed  CAS  Google Scholar 

  • Holcomb B, Yip-Schneider M et al (2008) The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 36(3):225–235

    Article  PubMed  CAS  Google Scholar 

  • Holloway SE, Beck AW et al (2006) Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann Surg Oncol 13(8):1145–1155

    Article  PubMed  Google Scholar 

  • Hotz HG, Hines OJ et al (2005) VEGF antisense therapy inhibits tumor growth and improves survival in experimental pancreatic cancer. Surgery 137(2):192–199

    Article  PubMed  Google Scholar 

  • Hu L, Hofmann J et al (2002) Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vitro ovarian cancer models. Cancer Res 62(4):1087–1092

    PubMed  CAS  Google Scholar 

  • Hu L, Zaloudek C et al (2000) In vitro and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 6(3):880–886

    PubMed  CAS  Google Scholar 

  • Ishihara H, Asano T et al (1993) Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36(11):1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Janvier R, Sourla A et al (1997) Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 17(3A):1551–1557

    PubMed  CAS  Google Scholar 

  • Jesnowski R, Liebe S et al (1998) Increasing the transfection efficacy and subsequent long-term culture of resting human pancreatic duct epithelial cells. Pancreas 17(3):262–265

    Article  PubMed  CAS  Google Scholar 

  • Jesnowski R, Muller P et al (1999) Immortalized pancreatic duct cells in vitro and in vitro. Ann N Y Acad Sci 880:50–65

    Article  PubMed  CAS  Google Scholar 

  • Jiang XR, Jimenez G et al (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114

    Article  PubMed  CAS  Google Scholar 

  • Jimenez C, Jones DR et al (1998) Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. Embo J 17(3):743–753

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Nishimoto H et al (2004) Protein kinase C βII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279(46):47720–47725 

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Um JH et al (2000) Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin. Leuk Res 24(11):917–925

    Article  PubMed  CAS  Google Scholar 

  • Kindler HL, Friberg G et al (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23(31):8033–8040

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Chiang GG et al (2004) Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg Med Chem 12(17):4749–4759

    Article  PubMed  CAS  Google Scholar 

  • Kondapaka SB, Singh SS et al (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    PubMed  CAS  Google Scholar 

  • Kreuz S, Siegmund D et al (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21(12):3964–3973

    Article  PubMed  CAS  Google Scholar 

  • Lawson T, Ouellette M et al (2005) Culture and immortalization of pancreatic ductal epithelial cells. Methods Mol Med 103:113–122

    PubMed  CAS  Google Scholar 

  • Le X, Shi Q et al (2000) Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res 20:935–946

    Article  PubMed  CAS  Google Scholar 

  • Li C, Heidt DG et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Lindsley CW, Zhao Z et al (2005) Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 15(3):761–764

    Article  PubMed  CAS  Google Scholar 

  • Lucas-Clerc C, Massart C et al (1993) Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Mol Cell Endocrinol 94(1):9–20

    Article  PubMed  CAS  Google Scholar 

  • Lynch DK, Ellis CA et al (1999) Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18(56):8024–8032

    Article  PubMed  CAS  Google Scholar 

  • Maehara N, Matsumoto K et al (2001) NK4, a four-kringle antagonist of HGF, inhibits spreading and invasion of human pancreatic cancer cells. Br J Cancer 84(6):864–873

    Article  PubMed  CAS  Google Scholar 

  • Maurel J, Martin-Richard M et al (2006) Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 66(5):1391–1398

    PubMed  CAS  Google Scholar 

  • Melstrom LG, Grippo PJ (2008) Models of pancreatic cancer: understanding disease progression. In: Lowy A, Leach S, Philip P (eds) Pancreatic cancer. Springer Science, New York, pp 137–158

    Google Scholar 

  • McDade TP, Perugini RA et al (1999) Ubiquitin-proteasome inhibition enhances apoptosis of human pancreatic cancer cells. Surgery 126(2):371–377

    PubMed  CAS  Google Scholar 

  • Moore MJ, Goldstein D et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Sipos B et al (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439(6):798–802

    PubMed  CAS  Google Scholar 

  • Morales CP, Holt SE et al (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21(1):115–118

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Moriai T et al (1998) Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 23(1):41–50

    PubMed  CAS  Google Scholar 

  • Muerkoster S, Arlt A et al (2003) Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer 104(4):469–476

    Article  PubMed  CAS  Google Scholar 

  • Muerkoster S, Wegehenkel K et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 64(4):1331–1337

    Article  PubMed  Google Scholar 

  • Murthy SS, Tosolini A et al (2000) Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenet Cell Genet 88(1,2):38–40

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Matsumoto K et al (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57(15):3305–3313

    PubMed  CAS  Google Scholar 

  • Ng SS, Tsao MS et al (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res 7(10):3269–3275

    PubMed  CAS  Google Scholar 

  • Ng SS, Tsao MS et al (2002) Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol Cancer Ther 1(10):777–783

    PubMed  CAS  Google Scholar 

  • Niedergethmann M, Hildenbrand R et al (2002) High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas. Pancreas 25(2):122–129

    Article  PubMed  Google Scholar 

  • Niu J, Li Z et al (2004) Identification of an autoregulatory feedback pathway involving interleukin-1alpha in induction of constitutive NF-kappaB activation in pancreatic cancer cells. J Biol Chem 279(16):16452–16462

    Article  PubMed  CAS  Google Scholar 

  • Ohta T, Numata M et al (1997) Neurotrophin-3 expression in human pancreatic cancers. J Pathol 181(4):405–412

    Article  PubMed  CAS  Google Scholar 

  • Oikawa T, Hitomi J et al (1995) Frequent expression of genes for receptor tyrosine kinases and their ligands in human pancreatic cancer cells. Int J Pancreatol 18(1):15–23

    PubMed  CAS  Google Scholar 

  • Oudit GY, Sun H et al (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37(2):449–471

    Article  PubMed  CAS  Google Scholar 

  • Ouellette MM, Lee K (2001) Telomerase: diagnostics, cancer therapeutics and tissue engineering. Drug Discov Today 6(23):1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Ouyang H, Mou Lj et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623–1631

    PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047

    PubMed  CAS  Google Scholar 

  • Praz GA, Halban PA et al (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210(2):345–352

    PubMed  CAS  Google Scholar 

  • Roberson A, Jackson S et al (2001) Therapeutic morpholino-substituted compounds. WO 01/53266 A1, Thrombogenix

    Google Scholar 

  • Rosenzweig KE, Youmell MB et al (1997) Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res 3(7):1149–1156

    PubMed  CAS  Google Scholar 

  • Rozenblum E, Schutte M et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57(9):1731–1734

    PubMed  CAS  Google Scholar 

  • Saad S, Gottlieb DJ et al (2002) Cancer cell-associated fibronectin induces release of matrix metalloproteinase-2 from normal fibroblasts. Cancer Res 62(1):283–289

    PubMed  CAS  Google Scholar 

  • Saif MW (2006) Anti-angiogenesis therapy in pancreatic carcinoma. J Pancreas 7(2):163–173

    Google Scholar 

  • Saito S, Nishimura N et al (1988) Establishment and characterization of a cultured cell line derived from nitrosamine-induced pancreatic ductal adenocarcinoma in Syrian golden hamsters. Gastroenterol Jpn 23(2):183–194

    PubMed  CAS  Google Scholar 

  • Saito Y, Sunamura M et al (2006) Oncolytic replication-competent adenovirus suppresses tumor angiogenesis through preserved E1A region. Cancer Gene Ther 13(3):242–252

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N et al (2003) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22(32):5021–5030

    Article  PubMed  CAS  Google Scholar 

  • Schmied BM, Ulrich AB et al (2000) Biologic instability of pancreatic cancer xenografts in the nude mouse. Carcinogenesis 21(6):1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Schultz RM, Merriman RL et al (1995) In vitro and in vitro antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 15(4):1135–1139

    PubMed  CAS  Google Scholar 

  • Sclabas GM, Fujioka S et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7(1):37–43; discussion 43

    Article  PubMed  Google Scholar 

  • Seo Y, Baba H et al (2000) High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer 88(10):2239–2245

    Article  PubMed  CAS  Google Scholar 

  • Sequist LV (2007) Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Oncologist 12:325–330

    Google Scholar 

  • Shah SA, Potter MW et al (2001) 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82(1):110–122

    Article  PubMed  CAS  Google Scholar 

  • Shibayama E, Koizumi H (1996) Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol 148(6):1807–1818

    PubMed  CAS  Google Scholar 

  • Siu LL, Awada A et al (2006) Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 12(1):144–151

    Article  PubMed  CAS  Google Scholar 

  • Sridhar SS, Hedley D et al (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4(4):677–685

    Article  PubMed  CAS  Google Scholar 

  • Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5(3):203–220

    Article  PubMed  CAS  Google Scholar 

  • Townsend CM Jr, Franklin RB et al (1982) Development of a transplantable model of pancreatic duct adenocarcinoma. Surgery 92(1):72–78

    PubMed  Google Scholar 

  • Ulrich AB, Schmied BM et al (2002) Pancreatic cell lines: a review. Pancreas 24(2):111–120

    Article  PubMed  Google Scholar 

  • Van Ummersen L, Binger K et al (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10(22):7450–7456

    Article  PubMed  Google Scholar 

  • Wang CY, Guttridge DC et al (1999) NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19(9):5923–5929

    PubMed  CAS  Google Scholar 

  • Wang CY, Mayo MW et al (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Beattie GM et al (1997) Isolation and characterization of a cell line from the epithelial cells of the human fetal pancreas. Cell Transplant 6(1):59–67

    Article  PubMed  CAS  Google Scholar 

  • Ward SG, Finan P (2003) Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol 3(4):426–434

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm SM, Adnane L et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm SM, Carter C et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  PubMed  CAS  Google Scholar 

  • Wymann MP, Zvelebil M et al (2003) Phosphoinositide 3-kinase signalling–which way to target? Trends Pharmacol Sci 24(7):366–376

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Wei D et al (2006) Transcriptional anti-angiogenesis therapy of human pancreatic cancer. Cytokine Growth Factor Rev 17:147–156

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Yin MJ et al (1999) Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274(38):27307–27314

    Article  PubMed  CAS  Google Scholar 

  • Yuan S, Rosenberg L et al (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Friess H et al (1999) Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17(8):2419–2428

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Grippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mullapudi, B., Ding, Y., Ding, X., Grippo, P. (2010). Drug Evaluations in Pancreatic Cancer Culture Systems. In: Han, H., Grippo, P. (eds) Drug Discovery in Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1160-5_1

Download citation

Publish with us

Policies and ethics