Skip to main content

Transformation Optics and Electromagnetic Cloak of Invisibility

  • Chapter
  • First Online:

Abstract

This chapter elaborates on the possibility and approach of using metamaterials to achieve the ultimate optical illusion – invisibility. Invisibility is a longtime dream that may date back to the very beginning of human civilization. The concept of being unseen and hence undetectable has appeared numerously in myths, legends, folklore and fiction as well as occurring in modern works such as movies, TV series and video games. For example, in the Greek mythology, the hero Perseus (son of Zeus) killed and beheaded Medusa (one of the Gorgons) when equipped with a helmet of invisibility. Also during the ancient Greek period, Plato described in his great work The Republic the ring of Gyges which could allow its owner to be invisible at will. This is one of the literary sources of many popular and similar subsequent stories, including the well-known book series and movie trilogy The Lord of the Rings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tachi S (2003) Telexistence and retro-reflective projection technology (RPT). Proceedings of the 5th Virtual Reality International Conference (VRIC2003), Laval Virtual, France

    Google Scholar 

  2. Nicorovici NA, Mcphedran RC, Milton GW (1994) Optical and dielectric-properties of partially resonant composites. Phys Rev B 49:8479–8482

    Article  ADS  Google Scholar 

  3. Milton GW, Nicorovici NAP (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc Lond Ser A 462:3027–3059

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Nicorovici NAP, Milton GW, McPhedran RC, Botten LC (2007) Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt Express 15:6314–6323

    Article  ADS  Google Scholar 

  5. Kerker M (1975) Invisible bodies. J Opt Soc Am 65:376–379

    Article  ADS  Google Scholar 

  6. Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623

    Article  ADS  Google Scholar 

  7. Garcia de Abajo FJ, Gomez-Santos G, Blanco LA, Borisov AG, Shabanov SV (2005) Tunneling mechanism of light transmission through metallic films. Phys Rev Lett 95:067403

    Article  ADS  Google Scholar 

  8. Miller DAB (2006) On perfect cloaking. Opt Express 14:12457–12466

    Article  ADS  Google Scholar 

  9. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312: 1780–1782

    Article  MathSciNet  ADS  Google Scholar 

  10. Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  ADS  Google Scholar 

  11. Greenleaf A, Lassas M, Uhlmann G (2003) Anisotropic conductivities that cannot be detected by EIT. Physiol Meas 24:413–419

    Article  Google Scholar 

  12. Benveniste Y, Miloh T (1999) Neutral inhomogeneities in conduction phenomena. J Mech Phys Solids 47:1873–1892

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Shalaev VM (2008) Transforming light. Science 322:384–386

    Article  Google Scholar 

  14. Tamm IE (1924) Electrodynamics of an anisotropic medium in the special theory of relativity. J Russ Phys Chem Soc 56:248

    Google Scholar 

  15. Tamm IE (1925) Crystal-optics of the theory of relativity pertinent to the geometry of a biquadratic form. J Russ Phys Chem Soc 57:1

    Google Scholar 

  16. Dolin LS (1961) On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling. Izv Vyssh Uchebn Zaved Radiofiz 4:964–967

    Google Scholar 

  17. Post EJ (1962) Formal structure of electromagnetics: general covariance and electromagnetics. Interscience, New York

    MATH  Google Scholar 

  18. Lax M, Nelson DF (1976) Maxwell equations in material form. Phys Rev B 13:1777–1784

    Article  MathSciNet  ADS  Google Scholar 

  19. Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates. Microw Opt Technol Lett 7:599–604

    Article  ADS  Google Scholar 

  20. Ward AJ, Pendry JB (1996) Refraction and geometry in Maxwell’s equations. J Mod Opt 43:773–793

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8:248

    Article  Google Scholar 

  22. Kildishev AV, Shalaev VM (2008) Engineering space for light via transformation optics. Opt Lett 33:43–45

    Article  ADS  Google Scholar 

  23. Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 1:063903

    Article  ADS  Google Scholar 

  24. Chen HY, Chan CT (2007) Transformation media that rotate electromagnetic fields. Appl Phys Lett 90:241105

    Article  ADS  Google Scholar 

  25. Kong FM, Wu BII, Kong JA, Huangfu JT, Xi S, Chen HS (2007) Planar focusing antenna design by using coordinate transformation technology. Appl Phys Lett 91:253509

    Article  ADS  Google Scholar 

  26. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  ADS  Google Scholar 

  27. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  ADS  Google Scholar 

  28. Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804

    Article  ADS  Google Scholar 

  29. Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8:247

    Article  Google Scholar 

  30. Cummer SA, Popa BI, Schurig D, Smith DR, Pendry J (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74:036621

    Article  ADS  Google Scholar 

  31. Nachman AI (1988) Reconstructions from boundary measurements. Ann Math 128:531–576

    Article  MathSciNet  Google Scholar 

  32. Wolf E, Habashy T (1993) Invisible bodies and uniqueness of the inverse scattering problem. J Mod Opt 40:785–792

    Article  ADS  Google Scholar 

  33. (2006) Breakthrough of the year – the runners-up. Science 314:1850–1855

    Google Scholar 

  34. Chen HY, Liang ZX, Yao PJ, Jiang XY, Ma HR, Chan CT (2007) Extending the bandwidth of electromagnetic cloaks. Phys Rev B 76:241104

    Article  ADS  Google Scholar 

  35. Kildishev AV, Cai W, Chettiar UK, Shalaev VM (2008) Transformation optics: approaching broadband electromagnetic cloaking. New J Phys 10:115029

    Article  Google Scholar 

  36. Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902

    Article  ADS  Google Scholar 

  37. Klein MW, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt Lett 31:1259–1261

    Article  ADS  Google Scholar 

  38. Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74

    Article  ADS  Google Scholar 

  39. Kildishev AV, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Shalaev VM (2006) Negative refractive index in optics of metal-dielectric composites. J Opt Soc Am B 23:423–433

    Article  ADS  Google Scholar 

  40. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227

    Article  ADS  Google Scholar 

  41. Klar TA, Kildishev AV, Drachev VP, Shalaev VM (2006) Negative-index metamaterials: going optical. IEEE J Sel Top Quantum Electron 12:1106–1115

    Article  Google Scholar 

  42. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105

    Article  ADS  Google Scholar 

  43. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452

    Article  ADS  Google Scholar 

  44. Aspnes DE (1982) Optical-properties of thin-films. Thin Solid Films 89:249–262

    Article  ADS  Google Scholar 

  45. Wiener O (1912) Die Theorie des Mischkorpers fur das Feld der stationaren Stromung. Abh Math-Phys Klasse Koniglich Sachsischen Des Wiss 32:509–604

    Google Scholar 

  46. Aspnes DE (1982) Bounds on allowed values of the effective dielectric function of 2-component composites at finite frequencies. Phys Rev B 25:1358–1361

    Article  ADS  Google Scholar 

  47. Bergman DJ (1980) Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric-constant of a 2-component composite-material. Phys Rev Lett 44:1285–1287

    Article  ADS  Google Scholar 

  48. Milton GW (1980) Bounds on the complex dielectric-constant of a composite-material. Appl Phys Lett 37:300–302

    Article  ADS  Google Scholar 

  49. Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6:4370–4379

    Article  ADS  Google Scholar 

  50. Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  51. Korobkin D, Urzhumov Y, Shvets G (2006) Enhanced near-field resolution in midinfrared using metamaterials. J Opt Soc Am B 23:468–478

    Article  ADS  Google Scholar 

  52. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595

    Article  Google Scholar 

  53. Schuller JA, Zia R, Taubner T, Brongersma ML (2007) Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys Rev Lett 99:107401

    Article  ADS  Google Scholar 

  54. O’Brien S, Pendry JB (2002) Photonic band-gap effects and magnetic activity in dielectric composites. J Phys Condens Matter 14:4035–4044

    Article  ADS  Google Scholar 

  55. Huang KC, Povinelli ML, Joannopoulos JD (2004) Negative effective permeability in polaritonic photonic crystals. Appl Phys Lett 85:543–545

    Article  ADS  Google Scholar 

  56. Wheeler MS, Aitchison JS, Mojahedi M (2005) Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B 72:193103

    Article  ADS  Google Scholar 

  57. Peng L, Ran LX, Chen HS, Zhang HF, Kong JA, Grzegorczyk TM (2007) Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys Rev Lett 98:157403

    Article  ADS  Google Scholar 

  58. Li JS, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901

    Article  ADS  Google Scholar 

  59. Knupp PM, Steinberg S (1993) Fundamentals of grid generation. CRC Press, Boca Raton, FL

    Google Scholar 

  60. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571

    Article  ADS  Google Scholar 

  61. Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photonics 3:461–463

    Article  ADS  Google Scholar 

  62. Smolyaninov II, Smolyaninova VN, Kildishev AV, Shalaev VM (2009) Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys Rev Lett 102:213901

    Article  ADS  Google Scholar 

  63. Leonhardt U, Tyc T (2009) Broadband invisibility by non-euclidean cloaking. Science 323:110–112

    Article  ADS  Google Scholar 

  64. Smolyaninov II, Hung YJ, Davis CC (2008) Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. Opt Lett 33:1342–1344

    Article  ADS  Google Scholar 

  65. Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Cai or V. Shalaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, W., Shalaev, V. (2010). Transformation Optics and Electromagnetic Cloak of Invisibility. In: Optical Metamaterials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1151-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1151-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1150-6

  • Online ISBN: 978-1-4419-1151-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics