Skip to main content

Electric Metamaterials

  • Chapter
  • First Online:
Optical Metamaterials

Abstract

This chapter deals with electric metamaterials – artificially structured materials with prescribed electric properties. Since such media were investigated long before the flourish of metamaterial research, we begin the chapter with a historical review of “artificial dielectrics” initiated by radio wave engineers in the mid-20th century. Next, we study two of the most important types of electric metamaterials: stratified metal-dielectric composite and periodic arrays of metallic wires. These metamaterials serve as starting points for many advanced material structures and devices, such as negative-index materials, meta-lenses and electromagnetic cloaks. We also briefly discuss the optical properties of random metal-dielectric composites, which can be regarded as disordered electric metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kock WE (1946) Metal-lens antennas. Proc IRE 34:828–836

    Article  Google Scholar 

  2. Kock WE (1948) Metallic delay lenses. Bell Syst Tech J 27:58–82

    Google Scholar 

  3. Brown J (1953) Artificial dielectrics having refractive indices less than unity. Proc IEE 100:51–62

    Google Scholar 

  4. Golden KE (1965) Plasma simulation with an artificial dielectric in a horn geometry. IEEE Trans Antennas Propag 13:587–594

    Article  ADS  Google Scholar 

  5. Rotman W (1962) Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans Antennas Propag 10:82–95

    Article  ADS  Google Scholar 

  6. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776

    Article  ADS  Google Scholar 

  7. Smith DR, Kroll N (2000) Negative refractive index in left-handed materials. Phys Rev Lett 85:2933–2936

    Article  ADS  Google Scholar 

  8. Silin RA (1972) Optical properties of artificial dielectrics. Radiophys Quantum Electron 15:809–820

    Article  Google Scholar 

  9. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1:41–48

    Article  ADS  Google Scholar 

  10. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1686

    Article  ADS  Google Scholar 

  11. Luneburg RK (1944) Mathematical theory of optics. Brown University, Providence

    Google Scholar 

  12. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227

    Article  ADS  Google Scholar 

  13. Wiener O (1912) Die Theorie des Mischkorpers fur das Feld der stationaren Stromung. Abh Math-Phys Klasse Koniglich Sachsischen Des Wiss 32:509–604

    Google Scholar 

  14. Aspnes DE (1982) Local-field effects and effective-medium theory – a microscopic perspective. Am J Phys 50:704–709

    Article  ADS  Google Scholar 

  15. Aspnes DE (1982) Optical-properties of thin-films. Thin Solid Films 89:249–262

    Article  ADS  Google Scholar 

  16. Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  17. Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702

    Article  ADS  Google Scholar 

  18. Ramakrishna SA, Pendry JB, Wiltshire MCK, Stewart WJ (2003) Imaging the near field. J Mod Opt 50:1419–1430

    ADS  Google Scholar 

  19. Belov PA, Hao Y (2006) Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B 73:113110

    Article  ADS  Google Scholar 

  20. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  ADS  Google Scholar 

  21. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452

    Article  ADS  Google Scholar 

  22. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons in thin-wire structures. J Phys Condens Matter 10:4785–4809

    Article  ADS  Google Scholar 

  23. Sarychev AK, Shalaev VM (2001) Comment on paper “Extremely low frequency plasmons in metallic mesostructures”. [JB Pendrey et al (1996) Phys Rev Lett 76:4773]. arXiv:cond-mat/0103145

    Google Scholar 

  24. Sarychev AK, Shalaev VM (2007) Electrodynamics of metamaterials. World Scientific, Singapore

    Book  MATH  Google Scholar 

  25. Maslovski SI, Tretyakov SA, Belov PA (2002) Wire media with negative effective permittivity: a quasi-static model. Microw Opt Tech Lett 35:47–51

    Article  Google Scholar 

  26. Markos P, Soukoulis CM (2003) Absorption losses in periodic arrays of thin metallic wires. Opt Lett 28:846–848

    Article  ADS  Google Scholar 

  27. Belov PA, Tretyakov SA, Viitanen AJ (2002) Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires. J Electromagnet Wave Appl 16:1153–1170

    Article  Google Scholar 

  28. Wu DM, Fang N, Sun C, Zhang X, Padilla WJ, Basov DN, Smith DR, Schultz S (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201–203

    Article  ADS  Google Scholar 

  29. Silveirinha MG (2006) Nonlocal homogenization model for a periodic array of epsilon-negative rods. Phys Rev E 73:046612

    Article  ADS  Google Scholar 

  30. Schwartz BT, Piestun R (2003) Total external reflection from metamaterials with ultralow refractive index. J Opt Soc Am B 20:2448–2453

    Article  ADS  Google Scholar 

  31. Schwartz BT, Piestun R (2004) Waveguiding in air by total external reflection from ultralow index metamaterials. Appl Phys Lett 85:1–3

    Article  ADS  Google Scholar 

  32. Rodriguez-Esquerre VF, Koshiba M, Hernandez-Figueroa HE, Rubio-Mercedes CE (2005) Power splitters for waveguides composed by ultralow refractive index metallic nanostructures. Appl Phys Lett 87:091101

    Article  ADS  Google Scholar 

  33. Belov PA, Marques R, Maslovski SI, Nefedov IS, Silveirinha M, Simovski CR, Tretyakov SA (2003) Strong spatial dispersion in wire media in the very large wavelength limit. Phys Rev B 67:113103

    Article  ADS  Google Scholar 

  34. Shapiro MA, Shvets G, Sirigiri JR, Temkin RJ (2006) Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves. Opt Lett 31:2051–2053

    Article  ADS  Google Scholar 

  35. Demetriadou A, Pendry JB (2008) Taming spatial dispersion in wire metamaterial. J Phys Condens Matter 20:295222

    Article  Google Scholar 

  36. Sarychev AK, Shalaev VM (2000) Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys Rep 335:276–371

    Article  ADS  Google Scholar 

  37. Genov DA, Sarychev AK, Shalaev VM (2003) Plasmon localization and local field distribution in metal-dielectric films. Phys Rev E 67:056611

    Article  ADS  Google Scholar 

  38. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109: 1492–1505

    Article  ADS  Google Scholar 

  39. Shalaev VM (2000) Nonlinear optics of random media: Fractal composites and metal-dielectric films. Springer, Berlin

    Google Scholar 

  40. Gresillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin VA, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys Rev Lett 82:4520–4523

    Article  ADS  Google Scholar 

  41. Brouers F, Blacher S, Lagarkov AN, Sarychev AK, Gadenne P, Shalaev VM (1997) Theory of giant Raman scattering from semicontinuous metal films. Phys Rev B 55:13234–13245

    Article  ADS  Google Scholar 

  42. Shalaev VM, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57:13265–13288

    Article  ADS  Google Scholar 

  43. Osawa M, Ikeda M (1991) Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films – contributions of electromagnetic and chemical mechanisms. J Phys Chem 95:9914–9919

    Article  Google Scholar 

  44. Yagil Y, Deutscher G (1992) Third-Harmonic generation in semicontinuous metal-films. Phys Rev B 46:16115–16121

    Article  ADS  Google Scholar 

  45. Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526

    Article  ADS  Google Scholar 

  46. Safonov VP, Shalaev VM, Markel VA, Danilova YE, Lepeshkin NN, Kim W, Rautian SG, Armstrong RL (1998) Spectral dependence of selective photomodification in fractal aggregates of colloidal particles. Phys Rev Lett 80:1102–1105

    Article  ADS  Google Scholar 

  47. Nyga P, Drachev VP, Thoreson MD, Shalaev VM (2008) Mid-IR plasmonics and photomodification with Ag films. Appl Phys B 93:59–68

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Cai or V. Shalaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, W., Shalaev, V. (2010). Electric Metamaterials. In: Optical Metamaterials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1151-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1151-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1150-6

  • Online ISBN: 978-1-4419-1151-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics