Skip to main content

Introduction

  • Chapter
  • First Online:
Optical Metamaterials

Abstract

As the starting point of the book, Chap. 1 discusses the conception, emergence, motivation and scope of the research field of optical metamaterials. We present a definition of the term “metamaterials,” emphasizing both the man-made nature and the character of macroscopic homogeneity in such materials. The emergence of optical metamaterials is explored within a larger historical context. Notable examples of optical metamaterials and exciting opportunities associated with them are briefly reviewed. At the end of the chapter, we introduce the effective parameters and notation conventions that are used in our descriptions of metamaterials throughout the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  ADS  Google Scholar 

  2. Wikipedia (2009) Metamaterial. http://en.wikipedia.org/wiki/Metamaterial, Accessed April, 2009

  3. Walser RM (2001) Electromagnetic metamaterials. In: Lakhtakia A, Weiglhofer WS, Hodgkinson IJ (eds) Complex mediums II: beyond linear isotropic dielectrics, Proc. SPIE 4467, SPIE – International Society for Optical Engineering, San Diego, CA, USA, pp. 1–15

    Google Scholar 

  4. Lakhtakia A, Mackay TG (2007) Meet the metamaterials. Opt Photon News 18:32–39

    Article  ADS  Google Scholar 

  5. Metamorphose http://www.metamorphose-eu.org/. Accessed April, 2009

  6. Pendry JB, Smith DR (2006) The quest for the superlens. Sci Am 295:60–67

    Article  Google Scholar 

  7. Stavenga DG (2006) Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index. J Eur Opt Soc 1:06010

    Article  Google Scholar 

  8. Kinoshita S, Yoshioka S, Kawagoe K (2002) Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc Lond Ser B 269:1417–1421

    Article  Google Scholar 

  9. Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32:33–45

    Article  Google Scholar 

  10. Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek P (2000) Before striking gold in gold-ruby glass. Nature 407:691–692

    Article  ADS  Google Scholar 

  11. Leonhardt U (2007) Optical metamaterials – invisibility cup. Nat Photonics 1:207–208

    Article  ADS  Google Scholar 

  12. Bose JC (1898) On the rotation of plane of polarization of electric waves by a twisted structure. Proc R Soc Lond 63:146–152

    Article  Google Scholar 

  13. Kock WE (1946) Metal-lens antennas. Proc IRE 34:828–836

    Article  Google Scholar 

  14. Brown J (1953) Artificial dielectrics having refractive indices less than unity. Proc IEE 100: 51–62

    Google Scholar 

  15. Rotman W (1962) Plasma simulation by artificial dielectrics and parallel-plate media. IEE Trans Antennas Propag AP-10:82–95

    Google Scholar 

  16. Hardy WN, Whitehead LA (1981) Split-ring resonator for use in magnetic-resonance from 200–2000 Mhz. Rev Sci Instrum 52:213–216

    Article  ADS  Google Scholar 

  17. Froncisz W, Hyde JS (1982) The loop-gap resonator – a new microwave lumped circuit electron-spin-resonance sample structure. J Magn Reson 47:515–521

    Google Scholar 

  18. Hong JS, Lancaster MJ (1996) Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters. IEEE Trans Microw Theory Tech 44:2099–2109

    Article  ADS  Google Scholar 

  19. Saadoun MMI, Engheta N (1992) A reciprocal phase-shifter using novel pseudochiral or omega-medium. Microw Opt Tech Lett 5:184–188

    Article  Google Scholar 

  20. Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov Phys Usp 10:509–514

    Article  ADS  Google Scholar 

  21. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  ADS  Google Scholar 

  22. Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353

    Article  ADS  Google Scholar 

  23. Zhang S, Fan WJ, Minhas BK, Frauenglass A, Malloy KJ, Brueck SRJ (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402

    Article  ADS  Google Scholar 

  24. Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV, Drachev VP, Shalaev VM (2007) Metamagnetics with rainbow colors. Opt Express 15:3333–3341

    Article  ADS  Google Scholar 

  25. Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

    Article  ADS  Google Scholar 

  26. Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404

    Article  ADS  Google Scholar 

  27. Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312:892–894

    Article  ADS  Google Scholar 

  28. Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32:53–55

    Article  ADS  Google Scholar 

  29. Chettiar UK, Kildishev AV, Yuan HK, Cai WS, Xiao SM, Drachev VP, Shalaev VM (2007) Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt Lett 32:1671–1673

    Article  ADS  Google Scholar 

  30. Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy due to electromagnetic coupling. Appl Phys Lett 90:223113

    Article  ADS  Google Scholar 

  31. Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858

    Article  ADS  Google Scholar 

  32. Klein MW, Enkrich C, Wegener M, Linden S (2006) Second-harmonic generation from magnetic metamaterials. Science 313:502–504

    Article  ADS  Google Scholar 

  33. Klein MW, Wegener M, Feth N, Linden S (2007) Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt Express 15:5238–5247

    Article  ADS  Google Scholar 

  34. Popov AK, Shalaev VM (2006) Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification. Appl Phys B 84:131–137

    Article  ADS  Google Scholar 

  35. Popov AK, Shalaev VM (2006) Compensating losses in negative-index metamaterials by optical parametric amplification. Opt Lett 31:2169–2171

    Article  ADS  Google Scholar 

  36. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  ADS  Google Scholar 

  37. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595

    Article  Google Scholar 

  38. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686

    Article  ADS  Google Scholar 

  39. Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7:403–408

    Article  ADS  Google Scholar 

  40. Cai WS, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys Rev B 72:193101

    Article  ADS  Google Scholar 

  41. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  ADS  Google Scholar 

  42. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312: 1780–1782

    Article  MathSciNet  ADS  Google Scholar 

  43. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  ADS  Google Scholar 

  44. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227

    Article  ADS  Google Scholar 

  45. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105

    Article  ADS  Google Scholar 

  46. Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452

    Article  ADS  Google Scholar 

  47. Jackson JD (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  48. Pendry JB (2003) Focus issue: negative refraction and metamaterials – introduction. Opt Express 11:639

    Article  ADS  Google Scholar 

  49. Thompson GHB (1955) Unusual waveguide characteristics associated with the apparent negative permeability obtainable in ferrites. Nature 175:1135–1136

    Article  ADS  Google Scholar 

  50. Agranovich VM, Shen YR, Baughman RH, Zakhidov AA (2004) Linear and nonlinear wave propagation in negative refraction metamaterials. Phys Rev B 69:165112

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Cai or V. Shalaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, W., Shalaev, V. (2010). Introduction. In: Optical Metamaterials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1151-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1151-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1150-6

  • Online ISBN: 978-1-4419-1151-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics