Skip to main content

Role of APC and Its Binding Partners in Regulating Microtubules in Mitosis

  • Chapter
APC Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 656))

Abstract

Adenomatous polyposis coli (APC) is a multifunctional protein commonly mutated in colon cancer. APC contains binding sites for multiple proteins with diverse roles in signaling and the structural and functional organization of cells. Recent evidence suggests roles for APC and some of its binding partners in regulating microtubules in mitosis. APC localizes to three key locations in mitosis: kinetochores, the cortex and centrosomes. Here, we discuss possible mechanisms for APC function at these sites and suggest new pathways by which APC mutations promote tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87(2):159–170.

    Article  CAS  PubMed  Google Scholar 

  2. Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1997; 1332(3):F127–147.

    CAS  PubMed  Google Scholar 

  3. Kishida S, Yamamoto H, Ikeda S et al. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 1998; 273(18):10823–10826.

    Article  CAS  PubMed  Google Scholar 

  4. Rubinfeld B, Tice DA, Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase lepsilon. J Biol Chem 2001; 276(42):39037–39045.

    Article  CAS  PubMed  Google Scholar 

  5. Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-rnediated transcription. Proc Natl Acad Sci USA 1998; 95(6):3020–3023.

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda S, Kishida M, Matsuura Y et al. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000; 19(4):537–545.

    Article  CAS  PubMed  Google Scholar 

  7. Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev 1999; 9(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  8. Munemitsu S, Souza B, Muller O et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14):3676–3681.

    CAS  PubMed  Google Scholar 

  9. Su LK, Burrell M, Hill DE et al. APC binds to the novel protein EB1. Cancer Res 1995; 55(14):2972–2977.

    CAS  PubMed  Google Scholar 

  10. Banks JD, Heald R. Adenomatous polyposis coli associates with the microtubule-destabilizing protein XMCAK. Curr Biol 2004; 14(22):2033–2038.

    Article  CAS  PubMed  Google Scholar 

  11. Jimbo T, Kawasaki Y, Koyama R et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 2002; 4(4):323–327.

    Article  CAS  PubMed  Google Scholar 

  12. Wen Y, Eng CH, Schmoranzer J et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6(9):820–830.

    Article  CAS  PubMed  Google Scholar 

  13. Nathke IS, Adams CL, Polakis P et al. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996; 134(1):165–179.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou FQ, Zhou J, Dedhar S et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 2004; 42(6):897–912.

    Article  CAS  PubMed  Google Scholar 

  15. Fodde R, Kuipers J, Rosenberg C et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001; 3(4):433–438.

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan KB, Burds AA, Swedlow JR et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol 2001; 3(4):429–432.

    Article  CAS  PubMed  Google Scholar 

  17. McCartney BM, Dierick HA, Kirkpatrick C et al. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol 1999; 146(6):1303–1318.

    Article  CAS  PubMed  Google Scholar 

  18. McCartney BM, McEwen DG, Grevengoed E et al. Drosophila APC2 and armadillo participate in tethering mitotic spindles to cortical actin. Nat Cell Biol 2001; 3(10):933–938.

    Article  CAS  PubMed  Google Scholar 

  19. Louie RK, Bahmanyar S, Siemers KA et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 2004; 117(Pt 7):1117–1128.

    Article  CAS  PubMed  Google Scholar 

  20. Biggins S, Walczak CE. Captivating capture: how microtubules attach to kinetochores. Curr Biol 2003; 13(11):R449–460.

    Article  CAS  PubMed  Google Scholar 

  21. Rieder CL, Salmon ED. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol 1998; 8(8):310–318.

    Article  CAS  PubMed  Google Scholar 

  22. Green RA, Kaplan KB. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 2003; 163(5):949–961.

    Article  CAS  PubMed  Google Scholar 

  23. Draviam VM, Shapiro I, Aldridge B et al. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1-or APC-depleted cells. EMBO J 2006; 25(12):2814–2827.

    Article  CAS  PubMed  Google Scholar 

  24. Dikovskaya D, Schiffmann D, Newton IP et al. Loss of APC induces polyploidy due to a combination of defects in mitosis and apoptosis. J Cell Biol, in press 2006.

    Google Scholar 

  25. Kita K, Wittmann T, Nathke IS et al. Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol Biol Cell 2006; 17(5):2331–2345.

    Article  CAS  PubMed  Google Scholar 

  26. Dikovskaya D, Newton IP, Nathke IS. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts. Mol Biol Cell 2004; 15(6):2978–2991.

    Article  CAS  PubMed  Google Scholar 

  27. Kroboth K, Newton IP, Kita K et al. Lack of adenomatous polyposiscoli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell 2007; 18(3):910–918.

    Article  CAS  PubMed  Google Scholar 

  28. Pinsky BA, Biggins S. The spindle checkpoint: tension versus attachment. Trends Cell Biol 2005; 15(9):486–493.

    Article  CAS  PubMed  Google Scholar 

  29. Dikovskaya D, Zumbrunn J, Penman GA et al. The adenomatous polyposis coli protein: in the limelight out at the edge. Trends Cell Biol 2001; 11(9):378–384.

    Article  CAS  PubMed  Google Scholar 

  30. Kinoshita K, Noetzel TL, Arnal I et al. Global and local control of microtubule destabilization promoted by a catastrophe kinesin MCAK/XKCM1. J Muscle Res Cell Motil 2006; 27(2):107–114.

    Article  CAS  PubMed  Google Scholar 

  31. Ahringer J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 2003; 15(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  32. Manneville JB, Etienne-Manneville S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell 2006; 98(9):557–565.

    Article  CAS  PubMed  Google Scholar 

  33. Beach DL, Thibodeaux J, Maddox P et al. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 2000; 10(23):1497–1506.

    Article  CAS  PubMed  Google Scholar 

  34. Bloom K. It’s a kar9ochore to capture microtubules. Nat Cell Biol 2000; 2(6):E96–98.

    Article  CAS  PubMed  Google Scholar 

  35. Lee L, Tirnauer JS, Li J et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 2000; 287(5461):2260–2262.

    Article  CAS  PubMed  Google Scholar 

  36. Korinek WS, Copeland MJ, Chaudhuri A et al. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science. Mar 24 2000; 287(5461):2257–2259.

    Google Scholar 

  37. Lu B, Roegiers F, Jan LY et al. Adherens junctions inhibit asymmetric division in the drosophila epithelium. Nature 2001; 409(6819):522–525.

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003; 301(5639):1547–1550.

    Article  CAS  PubMed  Google Scholar 

  39. Green RA, Wollman R, Kaplan KB. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 2005; 16(10):4609–4622.

    Article  CAS  PubMed  Google Scholar 

  40. Paoletti A, Bornens M. Kar9 asymmetrical loading on spindle poles mediates proper spindle alignment in budding yeast. Dev Cell 2003; 4(3):289–290.

    Article  CAS  PubMed  Google Scholar 

  41. Liakopoulos D, Kusch J, Grava S et al. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 2003; 112(4):561–574.

    Article  CAS  PubMed  Google Scholar 

  42. Theesfeld CL, Irazoqui JE, Bloom K et al. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J Cell Biol 1999; 146(5):1019–1032.

    Article  CAS  PubMed  Google Scholar 

  43. Hwang E, Kusch J, Barral Y et al. Spindle orientation in saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J Cell Biol 2003; 161(3):483–488.

    Article  CAS  PubMed  Google Scholar 

  44. Pearson CG, Bloom K. Dynamic microtubules lead the way for spindle positioning. Nat Rev Mol Cell Biol 2004; 5(6):481–492.

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, Waltzer L, Bienz M. A new drosophila APC homologue associated with adhesive zones of epithelial cells. Nat Cell Biol 1999; 1(3):144–151.

    Article  CAS  PubMed  Google Scholar 

  46. Nakagawa H, Murata Y, Koyama K et al. Identification of a brain-specific APC homologue, APCL and its interaction with beta-catenin. Cancer Res 1998; 58(22):5176–5181.

    CAS  PubMed  Google Scholar 

  47. McCartney BM, Price MH, Webb RL et al. Testing hypotheses for the functions of APC family proteins using null and truncation alleles in drosophila. Development 2006; 133(12):2407–2418.

    Article  CAS  PubMed  Google Scholar 

  48. van Es JH, Kirkpatrick C, van de Wetering M et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Curr Biol 1999; 9(2):105–108.

    Google Scholar 

  49. Mimori-Kiyosue Y, Tsukita S. Where is APC going? J Cell Biol 2001; 154(6):1105–1109.

    Article  CAS  PubMed  Google Scholar 

  50. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: Interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997; 9(5):683–690.

    Article  CAS  PubMed  Google Scholar 

  51. Bienz M, Hamada F. Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol 2004; 16(5):528–535.

    Article  CAS  PubMed  Google Scholar 

  52. Barth AI, Nelson WJ. What can humans learn from flies about adenomatous polyposis coli? Bioessays 2002; 24(9):771–774.

    Article  PubMed  Google Scholar 

  53. Mimori-Kiyosue Y, Shiina N, Tsukita S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 2000; 148(3):505–518.

    Article  CAS  PubMed  Google Scholar 

  54. Rogers SL, Rogers GC, Sharp DJ et al. Drosophila EB1 is important for proper assembly, dynamics and positioning of the mitotic spindle. J Cell Biol 2002; 158(5):873–884.

    Article  CAS  PubMed  Google Scholar 

  55. Mimori-Kiyosue Y, Shiina N, Tsukita S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 2000; 10(14):865–868.

    Article  CAS  PubMed  Google Scholar 

  56. Reilein A, Nelson WJ. APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol 2005; 7(5):463–473.

    Article  CAS  PubMed  Google Scholar 

  57. Reilein A, Yamada S, Nelson WJ. Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J Cell Biol 2005; 171(5):845–855.

    Article  CAS  PubMed  Google Scholar 

  58. Miller RK, Rose MD. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 1998; 140(2):377–390.

    Article  CAS  PubMed  Google Scholar 

  59. Murphy SM, Stearns T. Cytoskeleton: Microtubule nucleation takes shape. Curr Biol 1996; 6(6):642–644.

    Article  CAS  PubMed  Google Scholar 

  60. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 2002; 14(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  61. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-A look outside the nucleus. Science 2000; 287(5458):1606–1609.

    Article  CAS  PubMed  Google Scholar 

  62. Kaplan DD, Meigs TE, Kelly P et al. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem 2004; 279(12):10829–10832.

    Article  CAS  PubMed  Google Scholar 

  63. Bahmanyar S, Kaplan DD, DeLuca JG et al. β-catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 2006; 22(1):91–105.

    Article  Google Scholar 

  64. Huang P, Senga T, Hamaguchi M. A novel role of phospho-beta-carenin in microtubule regrowth at centrosome. Oncogene 2007; 26(30):4357–4371.

    Article  CAS  PubMed  Google Scholar 

  65. Ligon LA, Karki S, Tokiro M et al. Dynein binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol 2001; 3(10):913–917.

    Article  CAS  PubMed  Google Scholar 

  66. Wakefield JG, Stephens DJ, Tavare JM. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J Cell Sci 2003; 116(Pt 4):637–646.

    Article  CAS  PubMed  Google Scholar 

  67. Freed E, Lacey KR, Huie P et al. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 1999; 13(17):2242–2257.

    Article  CAS  PubMed  Google Scholar 

  68. Wojcik EJ, Glover DM, Hays TS. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr Biol 2000; 10(18):1131–1134.

    Article  CAS  PubMed  Google Scholar 

  69. Fabunmi RP, Wigley WC, Thomas PJ et al. Activity and regulation of the centrosome-associated proteasome. J Biol Chem 2000; 275(1):409–413.

    Article  CAS  PubMed  Google Scholar 

  70. McDonald HB, Byers B. A proteasome cap subunit required for spindle pole body duplication in yeast. J Cell Biol 1997; 137(3):539–553.

    Article  CAS  PubMed  Google Scholar 

  71. Winey M, Baum P, Goetsch L et al. Genetic determinants of spindle pole body duplication in budding yeast. Cold Spring Harb Symp Quant Biol 1991; 56:705–708.

    CAS  PubMed  Google Scholar 

  72. Schlessinger K ME, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol 2007; 178(3):355–361.

    Article  CAS  PubMed  Google Scholar 

  73. Penman GA, Leung L, Nathke IS. The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J Cell Sci 2005; 118(Pt 20):4741–4750.

    Article  CAS  PubMed  Google Scholar 

  74. Zumbrunn J, Kinoshita K, Hyman AA et al. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001; 11(1):44–49.

    Article  CAS  PubMed  Google Scholar 

  75. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103(2):311–320.

    Article  CAS  PubMed  Google Scholar 

  76. Michor F, Iwasa Y, Lengauer C et al. Dynamics of colorectal cancer. Semin Cancer Biol 2005; 15(6):484–493.

    Article  CAS  PubMed  Google Scholar 

  77. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386(6625):623–627.

    Article  CAS  PubMed  Google Scholar 

  78. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396(6712):643–649.

    Article  CAS  PubMed  Google Scholar 

  79. Nowak MA, Komarova NL, Sengupta A et al. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 2002; 99(25):16226–16231.

    Article  CAS  PubMed  Google Scholar 

  80. Rajagopalan H, Nowak MA, Vogelstein B et al. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003; 3(9):695–701.

    Article  CAS  PubMed  Google Scholar 

  81. Giaretti W, Venesio T, Prevosto C et al. Chromosomal instability and APC gene mutations in human sporadic colorectal adenomas. J Pathol 2004; 204(2):193–199.

    Article  CAS  PubMed  Google Scholar 

  82. Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev 2004; 14(2):120–125.

    Article  CAS  PubMed  Google Scholar 

  83. Michor F, Iwasa Y, Vogelstein B et al. Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 2005; 15(1):43–49.

    Article  CAS  PubMed  Google Scholar 

  84. Brinkley BR, Goepfert TM. Supernumerary centrosomes and cancer: Boveri’s hypothesis resurrected. Cell Motil Cytoskeleton 1998; 41(4):281–288.

    Article  CAS  PubMed  Google Scholar 

  85. Nigg EA. Centrosome aberrations: Cause or consequence of cancer progression? Nat Rev Cancer 2002; 2(11):815–825.

    Article  CAS  PubMed  Google Scholar 

  86. Tighe A, Johnson VL, Albertella M et al. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep 2001; 2(7):609–614.

    Article  CAS  PubMed  Google Scholar 

  87. Akong, K, Grevengoed EE, Price MH et al. Drosophila APC2 and APC1 play overlapping roles in wingless signaling in the embryo and imaginal discs. Development 2002; 250:91–100.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela I. M. Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bahmanyar, S., Nelson, W.J., Barth, A.I.M. (2009). Role of APC and Its Binding Partners in Regulating Microtubules in Mitosis. In: Näthke, I.S., McCartney, B.M. (eds) APC Proteins. Advances in Experimental Medicine and Biology, vol 656. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1145-2_6

Download citation

Publish with us

Policies and ethics