Skip to main content

Nuclear APC

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 656))

Abstract

Mutational inactivation of the tumor suppressor gene APC (Adenomatous polyposis coli) is thought to be an initiating step in the progression of the vast majority of colorectal cancers. Attempts to understand APC function have revealed more than a dozen binding partners as well as several subcellular localizations including at cell-cell junctions, associated with microtubules at the leading edge of migrating cells, at the apical membrane, in the cytoplasm and in the nucleus. The present chapter focuses on APC localization and functions in the nucleus. APC contains two classical nuclear localization signals, with a third domain that can enhance nuclear import. Along with two sets of nuclear export signals, the nuclear localization signals enable the large APC protein to shuttle between the nucleus and cytoplasm. Nuclear APC can oppose β-catenin-mediated transcription. This down-regulation of nuclear β-catenin activity by APC most likely involves nuclear sequestration of β-catenin from the transcription complex as well as interaction of APC with transcription corepressor CtBP. Additional nuclear binding partners for APC include transcription factor activator protein AP-2α, nuclear export factor Crm1, protein tyrosine phosphatase PTP-BL and perhaps DNA itself. Interaction of APC with polymerase β and PCNA, suggests a role for APC in DNA repair. The observation that increases in the cytoplasmic distribution of APC correlate with colon cancer progression suggests that disruption of these nuclear functions of APC plays an important role in cancer progression. APC prevalence in the cytoplasm of quiescent cells points to a potential function for nuclear APC in control of cell proliferation. Clear definition of APC’s nuclear function(s) will expand the possibilities for early colorectal cancer diagnostics and therapeutics targeted to APC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neufeld KL, White RL. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 1997; 94:3034–3039.

    Article  CAS  PubMed  Google Scholar 

  2. Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research 1994; 54(14):3676–3681.

    CAS  PubMed  Google Scholar 

  3. Smith K, Levy D, Maupin P, Pollard T, Vogelstein B, Kinzler K. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Research 1994; 54(14):3672–3675.

    CAS  PubMed  Google Scholar 

  4. Nathke IS, Adams CL, Polakis P, Sellin JH, Nelson J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996; 134:165–179.

    Article  CAS  PubMed  Google Scholar 

  5. Wong MH, Hermiston ML, Syder AJ, Gordon JI. Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci USA 1996; 93(18):9588–9593.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson CB, Neufeld KL, White RL. Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proc Natl Acad Sci USA Jun 25 2002; 99(13):8683–8688.

    Article  CAS  PubMed  Google Scholar 

  7. Sena P, Saviano M, Monni S, Losi L, Roncucci L, Marzona L, Pol AD. Subcellular localization of beta-catenin and APC proteins in colorectal preneoplastic and neoplastic lesions. Cancer Lett Sep 28 2006; 241(2):203–212.

    Article  CAS  PubMed  Google Scholar 

  8. Henderson B. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat Cell Biol 2000; 2:653–660.

    Article  CAS  PubMed  Google Scholar 

  9. Paine PL, Moore LC, Horowitz SB. Nuclear envelope permeability. Nature Mar 13 1975; 254(5496):109–114.

    Article  CAS  PubMed  Google Scholar 

  10. Galea MA, Eleftheriou A, Henderson BR. ARM domain-dependent nuclear import of adenomatous polyposis coli protein is stimulated by the B56 alpha subunit of protein phosphatase 2A. J Biol Chem 2001; 276(49):45833–45839.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang F, White R, Neufeld K. Phosphorylation near nuclear localization signal regulates nuclear import of APC protein. Pro. Natl Acad USA 2000; 97:12577–12582.

    Article  CAS  Google Scholar 

  12. Koike M, Kose S, Furuta M, Taniguchi N, Yokoya F, Yoneda Y, Imamoto N. beta-Catenin shows an overlapping sequence requirement but distinct molecular interactions for Its bidirectional passage through nuclear pores. J Biol Chem Aug 6 2004; 279(32):34038–34047.

    Article  CAS  PubMed  Google Scholar 

  13. Yokoya F, Imamoto N, Tachibana T, Yoneda Y. beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999; 10(4):1119–1131.

    CAS  PubMed  Google Scholar 

  14. Wiechens N, Fagotto F. CRM1-and Ran-independent nuclear export of beta-catenin. Curr Biol 2001; 11(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  15. Neufeld KL, Nix DA, Bogerd H, Kang Y, Beckerle MC, Cullen BR, White RL. Adenomatous Polyposis Coli Protein Contains Two Nuclear Export Signals and Shuttles between the Nucleus and Cytoplasm. Proc Natl Acad Sci USA 2000; 97:12085–12090.

    Article  CAS  PubMed  Google Scholar 

  16. Tickenbrock L, Cramer J, Vetter IR, Muller O. The coiled coil region (amino acids 129–250) of the tumor suppressor protein adenomatous polyposis coli (APC). Its structure and its interaction with chromosome maintenance region 1 (Crm-1). J Biol Chem Aug 30 2002; 277(35):32332–32338.

    Article  CAS  PubMed  Google Scholar 

  17. McCartney BM, Dierick HA, Kirkpatrick C, Moline MM, Baas A, Peifer M, Bejsovec A. Drosophila APC2 is a cytoskeletally-associared protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol 1999; 146(6):1303–1318.

    Article  CAS  PubMed  Google Scholar 

  18. Yu X, Waltzer L, Bienz M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nat Cell Biol 1999; 1(3):144–151.

    Article  CAS  PubMed  Google Scholar 

  19. Rosin-Arbfeld R, Townsley F, Bienz M. The APC tumour suppressor has a nuclear export function. Nature 2000; 406:1009–1012.

    Article  Google Scholar 

  20. Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J Mar 3 2003; 22(5):1101–1113.

    Article  CAS  PubMed  Google Scholar 

  21. Brocardo M, Nathke IS, Henderson BR. Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep Feb 2005; 6(2):184–190.

    Article  CAS  PubMed  Google Scholar 

  22. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390(6657):308–311.

    Article  CAS  PubMed  Google Scholar 

  23. Neufeld KL, Zhang F, Cullen BR, White RL. APC-mediated down-regulation of β-Catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 2000; 6:519–523.

    Google Scholar 

  24. Zhang F, White RL, Neufeld KL. Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Mol Cell Biol 2001; 21(23):8143–8156.

    Article  CAS  PubMed  Google Scholar 

  25. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science 1996; 272:1023–1026.

    Article  CAS  PubMed  Google Scholar 

  26. Homma MK, Li D, Krebs EG, Yuasa Y, Homma Y. Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. Proc Natl Acad Sci USA Apr 30 2002; 99(9):5959–5964.

    Article  CAS  PubMed  Google Scholar 

  27. Hildesheim J, Salvador JM, Hollander MC, Fornace AJ, Jr. Casein kinase 2-and protein kinase A-regulated adenomatous polyposis coli and beta-catenin cellular localization is dependent on p38 MAPK. J Biol Chem Apr 29 2005; 280(17):17221–17226.

    Article  CAS  PubMed  Google Scholar 

  28. Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M. Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene Sep 4 2003; 22(38):6013–6022.

    Article  CAS  PubMed  Google Scholar 

  29. Davies ML, Roberts GT, Spiller DG, Wakeman JA. Density-dependent location and interactions of truncated APC and beta-catenin. Oncogene Feb 19 2004; 23(7):1412–1419.

    Article  CAS  PubMed  Google Scholar 

  30. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta Jun 5 2003; 1653(1):1–24.

    CAS  PubMed  Google Scholar 

  31. Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995; 92(7):3046–3050.

    Article  CAS  PubMed  Google Scholar 

  32. Eleftheriou A, Yoshida M, Henderson BR. Nuclear export of human beta-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J Biol Chem Jul 13 2001; 276(28):25883–25888.

    Article  CAS  PubMed  Google Scholar 

  33. Hendriksen J, Fagotto F, van der Velde H, van Schie M, Noordermeer J, Fornerod M. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1. J Cell Biol. Dec 5 2005; 171(5):785–797.

    Article  CAS  PubMed  Google Scholar 

  34. Henderson BR, Galea M, Schuechner S, Leung L. Lymphoid enhancer factor-1 blocks adenomatous polyposis coli-mediated nuclear export and degradation of beta-catenin. Regulation by histone deacerylase 1. J Biol Chem Jul 5 2002; 277(27):24258–24264.

    Article  CAS  PubMed  Google Scholar 

  35. Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA Mar 2 2004; 101(9):2882–2887.

    Article  CAS  PubMed  Google Scholar 

  36. Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway. J Biol Chem Feb 13 2004; 279(7):5263–5267.

    Article  CAS  PubMed  Google Scholar 

  37. Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 1999; 112(Pt 8):1237–1245.

    CAS  PubMed  Google Scholar 

  38. Choi HJ, Huber AH, Weis WI. Thermodynamics of beta-catenin-ligand interactions: the roles of the N and C-terminal tails in modulating binding affinity. J Biol Chem Jan 13 2006; 281(2):1027–1038.

    Article  CAS  PubMed  Google Scholar 

  39. Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, Xu W. Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell Aug 27 2004; 15(4):523–533.

    Article  CAS  PubMed  Google Scholar 

  40. Sierra J, Yoshida T, Joazeiro CA, Jones KA. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev Mar 1 2006; 20(5):586–600.

    Article  CAS  Google Scholar 

  41. Wang S, Jones KA. CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol Nov 21 2006; 16(22):2239–2244.

    Article  CAS  PubMed  Google Scholar 

  42. Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci Apr 1 2006; 119(Pt 7):1453–1463.

    Article  CAS  PubMed  Google Scholar 

  43. Li Q, Dashwood RH. Activator protein 2alpha associateswith adenomatous polyposis coli/beta-catenin and Inhibits beta-catenin/T-cell factor transcriptional activity in colorectal cancer cells. J Biol Chem Oct 29 2004; 279(44):45669–45675.

    Article  CAS  PubMed  Google Scholar 

  44. Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell Nov 2004; 7(5):677–685.

    Article  CAS  PubMed  Google Scholar 

  45. Deka J, Herter P, Sprenger-Haussels M, Koosch S, Franz D, Muller KM, Kuhnen C, Hoffinann I, Muller O. The APC protein binds to A/T rich DNA sequences. Oncogene 1999; 18(41):5654–5661.

    Article  CAS  PubMed  Google Scholar 

  46. Narayan S, Jaiswal AS, Balusu R. Tumor suppressor APC blocks DNA polymerase beta-dependent strand displacement synthesis during long patch but not short patch base excision repair and increases sensitivity to methylmethane sulfonate. J Biol Chem Feb 25 2005; 280(8):6942–6949.

    Article  CAS  PubMed  Google Scholar 

  47. Erdmann KS, Kuhlmann J, Lessmann V, Herrmann L, Eulenburg V, Muller O, Heumann R. The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 2000; 19(34):3894–3901.

    Article  CAS  PubMed  Google Scholar 

  48. Kuhnen C, Herter P, Monse H, Kahmann S, Muehlberger T, Vogt PM, Steinau HU, Muller KM, Muller O. APC and beta-catenin in alveolar soft part sarcoma (ASPS)—immunohistochemical and molecular genetic analysis. Pathol Res Pract 2000; 196(5):299–304.

    CAS  PubMed  Google Scholar 

  49. Kotsinas A, Evangelou K, Zacharatos P, Kittas C, Gorgoulis VG. Proliferation, but not apoptosis, is associated with distinct beta-catenin expression patterns in non-smaIl-celllung carcinomas: relationship with adenomatous polyposis coli and G(1)-to S-phase cell-cycle regulators. Am J Pathol Nov 2002; 161(5):1619–1634.

    CAS  PubMed  Google Scholar 

  50. Mizumoto K, Sawa H. Cortical beta-catenin and APC regulate asymmetric nuclear beta-catenin localization during asymmetric cell division in C. elegans. Dev Cell Feb 2007; 12(2):287–299.

    Article  CAS  PubMed  Google Scholar 

  51. Klymkowsky MW, Williams BO, Barish GD, Varmus HE, Vourgourakis YE. Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. Mol Biol Cell 1999; 10(10):3151–3169.

    CAS  PubMed  Google Scholar 

  52. Langford KJ, Lee T, Askham JM, Morrison EE. Adenomatous polyposis coli localization is both cell type and cell context dependent. Cell Motil Cytoskeleton Aug 2006; 63(8):483–492.

    Article  CAS  PubMed  Google Scholar 

  53. Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 1999; 13(10):1309–1321.

    Article  CAS  Google Scholar 

  54. Joslyn G, Richardson D, White R, Alber T. Dimer formation by an N-terminal coiled coil in the APC protein. Proc Nat Acad Sci USA 1993; 90:11109–11113.

    Article  CAS  PubMed  Google Scholar 

  55. Roberts GT, Davies ML, Wakeman JA. Interaction between Ku80 protein and a widely used antibody to adenomatous polyposis coli. Br J Cancer Jan 27 2003; 88(2):202–205.

    Article  CAS  PubMed  Google Scholar 

  56. Rosin-Arbesfeld R, Ihrke G, Bienz M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J Nov 1 2001; 20(21):5929–5939.

    Article  CAS  PubMed  Google Scholar 

  57. Davies ML, Roberts GT, Stuart N, Wakeman JA. Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein. Br J Cancer 2007; 97(3):384–390.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi L. Neufeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Neufeld, K.L. (2009). Nuclear APC. In: Näthke, I.S., McCartney, B.M. (eds) APC Proteins. Advances in Experimental Medicine and Biology, vol 656. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1145-2_2

Download citation

Publish with us

Policies and ethics