EPR Studies of Xanthine Oxidoreductase and Other Molybdenum-Containing Hydroxylases

  • Russ Hille
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)


A summary is provided both of early work establishing the different types of EPR signals manifested by the molybdenum centers of enzymes such as xanthine oxidoreductase and of more recent studies, frequently employing more advanced EPR-related methods, which have contributed significantly to our understanding of the physical and electronic structures of the enzyme active site. Structures for the signal-giving species, frequently supported by independent x-ray crystallographic studies, are placed in a catalytic context.


Electron Paramagnetic Resonance Xanthine Oxidase Electron Spin Echo Envelope Modulation Xanthine Dehydrogenase Sulfite Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bray RC. 1975. Molybdenum iron–sulfur flavin hydroxylases and related enzymes. In The Enzymes, Vol. 12 3rd ed, pp. 299–419. Ed Boyer PD. New York: Academic Press.Google Scholar
  2. 2.
    Hille R, Nishino T. 1995. Xanthine oxidase and xanthine dehydrogenase. FASEB J 9:995–1003.PubMedGoogle Scholar
  3. 3.
    Bray RC, Meriwether LS. 1966. Electron spin resonance of xanthine oxidase substituted with molybdenum–95. Nature 212(506):467–469.CrossRefPubMedGoogle Scholar
  4. 4.
    Palmer G, Bray RC, Beinerrt H. 1964. Direct studies on the electron transfer sequence in xanthine oxidase by electron paramagnetic resonance spectroscopy, I: techniques and description of spectra. J Biol Chem 239(8):2657–2666.PubMedGoogle Scholar
  5. 5.
    Bray RC, Palmer G, Beinert H. 1964. Direct studies on the electron transfer sequence in xanthine oxidase by electron paramagnetic resonance spectroscopy, II: kinetic studies employing rapid freezing. J Biol Chem 239(8):2667–2676.PubMedGoogle Scholar
  6. 6.
    Bray RC, Vänngård T. 1969. “Rapidly appearing” molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase. Biochem J 114(1):725–734.PubMedGoogle Scholar
  7. 7.
    Pick FM, Bray RC. 1969. Complex formation between reduced xanthine oxidase and purine substrates demonstrated by electron paramagnetic resonance. Biochem J 114(3):735–742.PubMedGoogle Scholar
  8. 8.
    Bray RC, Barber MJ, Lowe DJ. 1978. Electron paramagnetic resonance spectroscopy of complexes of xanthine oxidase with xanthine and uric acid. Biochem J 171(3):653–658.PubMedGoogle Scholar
  9. 9.
    Bray RC, George GN. 1985. Electron paramagnetic resonance studies using pre-steady-state kinetics and substitution with stable isotopes on the mechanism of action of molybdoenzymes. Biochem Soc Trans 13(3):560–567.PubMedGoogle Scholar
  10. 10.
    Edmondson DE, Ballou D, van Heuvelen A, Palmer G, Massey V. 1973. Kinetic studies on the substrate reduction of xanthine oxidase. J Biol Chem 248(17):6135–6144.PubMedGoogle Scholar
  11. 11.
    Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF. 2000. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA 97(20):10723–10728.CrossRefPubMedGoogle Scholar
  12. 12.
    Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T. 2004. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci USA 101(21):7931–7936.CrossRefPubMedGoogle Scholar
  13. 13.
    Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R. 1995. Crystal structure of the xanthine oxidase-related aldehyde oxidoreductase from D. gigas. Science 270(5239):1170–1176.CrossRefPubMedGoogle Scholar
  14. 14.
    Huber R, Hof P, Duarte RO, Moura JJG, Moura I, LeGall J, Hille R, Archer M, Romão M. 1996. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc Natl Acad Sci USA 93(17):8846–8851.CrossRefPubMedGoogle Scholar
  15. 15.
    Dobbek H, Gremer L, Meyer O, Huber R. 1999. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron–sulfur flavoprotein containing selanylcysteine. Proc Natl Acad Sci USA 96(16):8884–8889.CrossRefPubMedGoogle Scholar
  16. 16.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O. 2002. Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1-angstrom resolution. Proc Natl Acad Sci USA 99(25):15971–15976.CrossRefPubMedGoogle Scholar
  17. 17.
    Bonin I, Martins BM, Purvanov V, Fetzner S, Huber R, Dobbek H. 2004. Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Structure 12(8):1425–1435.CrossRefPubMedGoogle Scholar
  18. 18.
    Tullius TD, Kurtz DM Jr, Conradson SD, Hodgson KO. 1979. The molybdenum site of xanthine oxidase: structural evidence from X-ray absorption spectroscopy. J Am Chem Soc 101(10):2776–2779.CrossRefGoogle Scholar
  19. 19.
    Bordas J, Bray RC, Garner CD, Gutteridge S, Hasnain S. 1980. X-ray absorption spectroscopy of xanthine oxidase: the molybdenum centres of the functional and the desulpho forms. Biochem J 191(2):499.PubMedGoogle Scholar
  20. 20.
    Cramer SP, Wahl R, Rajagopalan KV. 1981. Molybdenum sites of sulfite oxidase and xanthine dehydrogenase: a comparison by EXAFS. J Am Chem Soc 103(26):7721–7727.CrossRefGoogle Scholar
  21. 21.
    Cramer SP, Hille, R. 1985. Arsenite-inhibited xanthine oxidase: determination of the molybdenum–sulfur–arsenic geometry by EXAFS. J Am Chem Soc 107(26):8164–8169.CrossRefGoogle Scholar
  22. 22.
    Hille R, George GN, Eidsness MK, Cramer SP. 1989. EXAFS of xanthine oxidase complexes with alloxanthine, violapterin, and 6-pteridylaldehyde. Inorg Chem 28(21):4018–4022.CrossRefGoogle Scholar
  23. 23.
    Turner NA, Bray RC, Diakun GP. 1989. Information from e.x.a.f.s. spectroscopy on the structures of different forms of molybdenum in xanthine oxidase and the catalytic mechanism of the enzyme. Biochem J 260(2):563–571.PubMedGoogle Scholar
  24. 24.
    Doonan, CJ, Stockert, AL, Hille R, George GN. 2005. Nature of the catalytically labile oxygen in the active site of xanthine oxidase. J Am Chem Soc 127(12):4518–4522.CrossRefPubMedGoogle Scholar
  25. 25.
    Stiefel EI. 1973. Proposed molecular mechanism for the action of molybdenum in enzymes: coupled proton and electron transfer. Proc Natl Acad Sci USA 70(4):988–992.CrossRefPubMedGoogle Scholar
  26. 26.
    Stiefel EI. 1977. The coordination and bioinorganic chemistry of molybdenum. Prog Inorg Chem 21(1):1–223.CrossRefGoogle Scholar
  27. 27.
    Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. 2003. An extremely potent inhibitor of xanthine oxidoreductase. J Biol Chem 278(3):1848–1855.CrossRefPubMedGoogle Scholar
  28. 28.
    Davis MD, Olson JS, Palmer G. 1982. Charge-transfer complexes between pteridine substrates and the active-center molybdenum of xanthine oxidase. J Biol Chem 259(24):4630–4737.Google Scholar
  29. 29.
    Davis MD, Olson JS, Palmer G. 1984. The reaction of xanthine oxidase with lumazine: characterization of the reductive half-reaction. J Biol Chem 259(6):3526–3533.PubMedGoogle Scholar
  30. 30.
    Hille, R. 1996. The mononuclear molybdenum enzymes, Chem Rev 96(7):2757–2816.CrossRefPubMedGoogle Scholar
  31. 31.
    Hille, R. 2002. Molybdenum and tungsten in biology. Trends Biochem Sci 27(7):360–367.CrossRefPubMedGoogle Scholar
  32. 32.
    Hille R. 2005. Molybdenum-containing hydroxylases. Arch Biochem Biophys 433(1):107–116.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim JH, Ryan MG, Knaut H, Hille R. 1996. The reductive half-reaction of xanthine oxidase: a pH dependence and solvent kinetic isotope effect study. J Biol Chem 271(12):6771–6780.CrossRefPubMedGoogle Scholar
  34. 34.
    Xia M, Dempski R, Hille R. 1999. The reaction of xanthine oxidase with aldehyde substrates. J Biol Chem 274(6):3323–3330.CrossRefPubMedGoogle Scholar
  35. 35.
    Leimkühler S, Hodson R, George GN, Rajagopalan KV. 2003. Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria in humans. J Biol Chem 278(23):20802–20811.CrossRefPubMedGoogle Scholar
  36. 36.
    Leimkühler S, Stockert AL, Igarashi K, Nishino T, Hille R. 2004. The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase. J Biol Chem 279(39):40437–40444.CrossRefPubMedGoogle Scholar
  37. 37.
    Skibo EB, Gilchrist JH, Lee C-H. 1987. Electronic probes of the mechanism of substrate oxidation by buttermilk xanthine oxidase: role of the active-site nucleophile in oxidation. Biochemistry 26(11):3032–3037.CrossRefPubMedGoogle Scholar
  38. 38.
    Murray KN, Watson JG, Chaykin S. 1965. Catalysis of the direct transfer of oxygen from nicotinamide N-oxide to xanthine by xanthine oxidase. J Biol Chem 241(20):4798–4801.Google Scholar
  39. 39.
    Hille R, Sprecher H. 1987. On the mechanism of action of xanthine oxidase. J Biol Chem 262(23):10914–10917.PubMedGoogle Scholar
  40. 40.
    Stockert AL, Shinde S, Anderson RF, Hille R. 2002. The reaction mechanism of xanthine oxidase: evidence for two-electron chemistry rather than sequential one-electron steps. J Am Chem Soc 124(49):14554–14555.CrossRefPubMedGoogle Scholar
  41. 41.
    McWhirter RB, Hille R. 1991. The reductive half-reaction of xanthine oxidase: spectral intermediates in the hydroxylation of 2-hydroxy-6-methylpurine. J Biol Chem 266(35):23724–23731.PubMedGoogle Scholar
  42. 42.
    Bray RC, Knowles PF. 1968. Electron spin resonance in enzyme chemistry: the mechanism of action of xanthine oxidase. Proc Roy Soc (London) A 302(1474):351–353.CrossRefGoogle Scholar
  43. 43.
    Gutteridge S, Tanner SJ, Bray RC. 1978. The molybdenum centre of native xanthine oxidase: evidence to proton transfer from substrates to the centre and for existence of an anion binding site. Biochem J 175(3):869–878.PubMedGoogle Scholar
  44. 44.
    Voityuk AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romão MJ, Rosch N. 1997. Prediction of alternative structures of the molybdenum site in the xanthine oxidase-related aldehyde oxide reductase. J Am Chem Soc 119(13):3159–3160.CrossRefGoogle Scholar
  45. 45.
    Ilich P, Hille R. 1999. The mechanism of formamide hydroxylation catalyzed by a molybdenum–dithiolene complex: a model for xanthine oxidase reactivity. J Phys Chem B 103(25):5406–5412.CrossRefGoogle Scholar
  46. 46.
    Ilich P, Hille R. 2002. Reactivity of oxo, selenido and tellurido Mo–dithiolene: understanding the reactivity of xanthine oxidase. J Am Chem Soc 124(24):6796–6797.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang X-H, Wu Y-D. 2005. As theoretical study on the mechanism of the reductive half-reaction of xanthine oxidase. Inorg Chem 44(5):1466–1471.CrossRefPubMedGoogle Scholar
  48. 48.
    Massey V, Edmondson D. 1970. On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245(24):6595–6598.PubMedGoogle Scholar
  49. 49.
    Tanner S, Bray RC, Bergmann F. 1978. 13C hyperfine splitting of some molybdenum electron paramagnetic resonance signals of xanthine oxidase. Biochem Soc Trans 6(8):1328–1330.PubMedGoogle Scholar
  50. 50.
    Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ. 1996. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17O- and 13C- ENDOR and kinetic studies. Biochemistry 35(5):1432–1443.CrossRefPubMedGoogle Scholar
  51. 51.
    Manikandan P, Choi E-Y, Hille R, Hoffman BM. 2001. 35 GHz ENDOR characterization of the “very rapid” signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo–C interaction. J Am Chem Soc 123(11):2658–2663.CrossRefPubMedGoogle Scholar
  52. 52.
    Lowe DJ. 2002. Enzymes of the xanthine oxidase family: the role of molybdenum and tungsten: their roles in biological processes. In Metal ions in biological systems, Vol. 39, pp. 455–479. Ed A Sigel, H Sigel. New York: Marcel Dekker.Google Scholar
  53. 53.
    Lorigan GA, Britt RD, Kim JH, Hille R. 1994. Electron spin echo envelope modulation spectroscopy of the molybdenum center of xanthine oxidase. Biochim Biophys Acta 1185(3):284–294.CrossRefPubMedGoogle Scholar
  54. 54.
    Jones RM, Inscore FE, Hille R, Kirk ML. 1999. Freeze-quench difference magnetic circular dichroism study of a xanthine oxidase intermediate. Inorg Chem 38(22):4963–4970.CrossRefPubMedGoogle Scholar
  55. 55.
    Hawkes, TR, George GN, Bray RC. 1984. The structure of the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d[pyrimidine-4,6-diol) with the molybdenum centre of xanthine oxidase from electron paramagnetic resonance spectroscopy. Biochem J 218(3):961–968.PubMedGoogle Scholar
  56. 56.
    Massey V, Komai H, Palmer G, Elion GB. 1970. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 246(11):2837–2844.Google Scholar
  57. 57.
    Truglio JJ, Theis K, Leimkühler S, Rappa R, Rajagopalan KV, Kisker C. 2002. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 10(1):115–126.Google Scholar
  58. 58.
    Bayse CA. 2006. Theoretical characterization of the “very rapid” Mo(V) species generated in the oxidation of xanthine oxidase. Inorg Chem 45(5):2199–2202.CrossRefPubMedGoogle Scholar
  59. 59.
    Hille R, Kim JH, Hemann C. 1993. Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the “rapid” MoV EPR signal. Biochemistry 32(15):3973–3980.CrossRefPubMedGoogle Scholar
  60. 60.
    Olson JS, Ballou DP, Palmer G, Massey V. 1974. The mechanism of action of xanthine oxidase. J Biol Chem 249(14):4363–4382.PubMedGoogle Scholar
  61. 61.
    Tsopanakis A, Tanner SJ, Bray RC. 1978. pH-jump studies at sub-zero temperatures on an intermediate in the reaction of xanthine oxidase with xanthine. Biochem J 175(3):879–885.PubMedGoogle Scholar
  62. 62.
    Malthouse JPG, George GN, Lowe DJ, Bray RC. 1981. Coupling of [33S] sulphur to molybdenum(V) in different reduced forms of xanthine oxidase. Biochem J 199(3):629–637.PubMedGoogle Scholar
  63. 63.
    Astashkin AV, Mader ML, Pacheco A, Enemark JH, Raitsimring AM. 2000. Direct detection of the proton-containing group coordinated to Mo(V) in the high pH form of chicken sulfite oxidase by refocused primary ESEEM spectroscopy: structural and mechanistic implications. J Am Chem Soc 122(22):5294–5302.CrossRefGoogle Scholar
  64. 64.
    Bray RC, Knowles PF, Pick FM, Vänngård T. 1968. Electron spin resonance evidence for interaction of protons with Mo(V) in reduced forms of xanthine oxidase. Biochem J 107(2):601–602.PubMedGoogle Scholar
  65. 65.
    Malthouse JPG, Bray RC. 1980. The nature of the sulphur liberated from xanthine oxidase by cyanide. Biochem J 191(1):265–267.PubMedGoogle Scholar
  66. 66.
    Wilson GL, Kony M, Tiekink ERT, Pilbrow JR, Spence JT, Wedd AG. 1988. O-17 and Mo-95 coupling in spectroscopic models of molybdoenzymes. J Am Chem Soc 110(20):6923–6925.CrossRefGoogle Scholar
  67. 67.
    Wilson GL, Greenwood RJ, Pilbrow JR, Spence JT, Wedd AG. 1991. Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of Mo-95 and S-33 hyperfine coupling. J Am Chem Soc 113(18):6803–6812.CrossRefGoogle Scholar
  68. 68.
    FM, McGartoll MA, Bray RC. 1971. Reaction of formaldehyde and of methanol with xanthine oxidase. Eur J Biochem 18(1):65–72.CrossRefGoogle Scholar
  69. 69.
    Howes BD, Pinhal NM, Turner NA, Bray RC, Anger G, Ehrenberg A, Raynor JB, Lowe DJ. 1990. Proton electron-nuclear double-resonance spectra of molybdenum(V) in different reduced forms of xanthine oxidase. Biochemistry 29(26):6120–6127.CrossRefPubMedGoogle Scholar
  70. 70.
    Lowe DJ, Barber MJ, Pawlik RT, Bray RC. 1976. A new non-functional form of milk xanthine oxidase containing stable quinquivalent molybdenum. Biochem J 155(1):81–85.PubMedGoogle Scholar
  71. 71.
    George GN, Bray RC. 1983. Formation of the inhibitory complex of p-chloromercuri- benzoate with xanthine oxidase, evaluation of hyperfine and quadrupole couplings of mercury to molybdenum(V) from the electron paramagnetic resonance spectrum, and the structure of the complex. Biochemistry 22(23):5443–5452.CrossRefGoogle Scholar
  72. 72.
    George GN, Bray RC. 1983. Reaction of arsenite ions with the molybdenum center of milk xanthine oxidase. Biochemistry 22(5):1013–1021.CrossRefPubMedGoogle Scholar
  73. 73.
    Hille R, Stewart RC, Fee JA, Massey V. 1983. The interaction of arsenite with xanthine oxidase. J Biol Chem 258(8):4849–4856.PubMedGoogle Scholar
  74. 74.
    Boer DR, Thapper A, Brondino CD, Romão MJ, Moura JJG. 2004. X-ray crystal structure and EPR spectra of “arsenite-inhibited” Desulfovibrio gigas aldehyde dehydrogenase: a member of the xanthine oxidase family. J Am Chem Soc 126(28):8614–8615.CrossRefPubMedGoogle Scholar
  75. 75.
    Enemark JH, Cooney, JJA, Wang J-J, Holm RH. 2004. Synthetic analogs and reaction systems relevant to the molybdenum and tungsten oxotransferases. Chem Rev 104(2):1175–1200.CrossRefPubMedGoogle Scholar
  76. 76.
    George GN, Bray RC. 1988. Studies by electron paramagnetic resonance spectroscopy of xanthine oxidase enriched with molybdenum-95 and with molybdenum-97. Biochemistry 27(10):3603–3609.CrossRefPubMedGoogle Scholar
  77. 77.
    Gutteridge S, Bray RC. 1980. Oxygen-17 splitting of the very rapid molybdenum(V) e.p.r. signal from xanthine oxidase. Biochem J 189(3):615–623.PubMedGoogle Scholar
  78. 78.
    Bray RC, Gutteridge S. 1982. Numbers and exchangeability of oxygen-17 atoms coupled to molybdenum(V) in different reduced forms of xanthine oxidase. Biochemistry 21(23):5992–5999.CrossRefPubMedGoogle Scholar
  79. 79.
    Greenwood RJ, Wilson GL, Pilbrow JR, Wedd AG. 1993. Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of O-17 hyperfine coupling. J Am Chem Soc 115(13):5385–5392.CrossRefGoogle Scholar
  80. 80.
    Abragam A, Bleaney B. 1970. Electron paramagnetic resonance of transition ions. Oxford: Oxford UP.Google Scholar
  81. 81.
    Swann J, Westmoreland TD. 1997. Density functional calculations of g values and molybdenum hyperfine coupling constants for a series of molybdenum(V) oxyhalide anions. Inorg Chem 36(23):5348–5357.CrossRefGoogle Scholar
  82. 82.
    Rappé, AK, Goddard III WA. 1980. Bivalent spectator oxo bonds in metathesis and epoxidation of alkenes. Nature 285(5763):311–312.CrossRefGoogle Scholar
  83. 83.
    Hille R, Massey V. 1986. The equilibration of reducing equivalents within milk xanthine oxidase. J Biol Chem 261(3):1241–1247.PubMedGoogle Scholar
  84. 84.
    Hille R, Anderson RF. 1991. Electron transfer in milk xanthine oxidase as studied by pulse radiolysis. J Biol Chem 266(9):5608–5615.PubMedGoogle Scholar
  85. 85.
    Hille R, Anderson RF. 2001. Coupled electron transfer and protonation/deprotonation in complex flavoproteins: solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase. J Biol Chem 276(33):31193–31201.CrossRefPubMedGoogle Scholar
  86. 86.
    Palmer G, Massey V. 1969. Electron paramagnetic resonance and circular dichroism studies of milk xanthine oxidase. J Biol Chem 244(10):2614–2620.PubMedGoogle Scholar
  87. 87.
    Hille R, Hagen WR, Dunham, WR. 1985. Spectroscopic studies of the iron-sulfur centers in xanthine oxidase. J Biol Chem 260(19):10569–10575.PubMedGoogle Scholar
  88. 88.
    Caldeira J, Belle V, Asso M, Guigliarelli B, Moura I, Moura JJG, Bertrand P. 2000. Analysis of the electron paramagnetic resonance properties of the [2Fe-2S](1+) centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II. Biochemistry 39(10):2700–2707.CrossRefPubMedGoogle Scholar
  89. 89.
    Andrade SLA, Brondino CD, Feio MJ, Moura I, Moura JJG. 2000. Aldehyde oxidore- ductase activity in Desulfovibrio alaskensis NCIMB 13491: EPR assignment of the proximal [2Fe–2S] cluster to the Mo site. Eur J Biochem 267(7):2054–2061.CrossRefPubMedGoogle Scholar
  90. 90.
    Gremer L, Kellner S, Dobbek H, Huber R, Meyer O. 2000. Binding of flavin adenine dinucleotide to molybdenum-containing carbon monoxide dehydrogenase from Oligotropha carboxidovorans: structural and functional analysis of a carbon monoxide dehydrogenase species in which the native flavoprotein has been replaced by its recombinant counterpart produced in Escherichia coli. J Biol Chem 275(3):1864–1872.CrossRefPubMedGoogle Scholar
  91. 91.
    Lowe DJ, Lynden-Bell RM, Bray RC. 1972. Spin–spin interaction between molybdenum and one of the iron–sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism. Biochem J 130(1):239–249.PubMedGoogle Scholar
  92. 92.
    Lowe DJ, Hyde JS. 1975. Electron–electron double resonance measurements on xanthine oxidase. Biochim Biophys Acta 377(1):205–210.PubMedGoogle Scholar
  93. 93.
    Lowe DJ, Bray RC. 1978. Magnetic coupling of the molybdenum and iron–sulphur centres in xanthine oxidase and xanthine dehydrogenases. Biochem J 169(2):471–479.PubMedGoogle Scholar
  94. 94.
    More C, Asso M, Roger G, Guigliarelli B, Caldeira J, Moura J, Bertrand P. 2005. Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe–2S](1+2) clusters. Bio- chemistry 44(34):11628–11635.Google Scholar
  95. 95.
    Canne C, Stephan I, Finsterbusch J, Lingens F, Kappl R, Fetzner S, Hüttermann J. 1997. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1- oxidoreductase. Biochemistry 36(32):9780–9790.CrossRefPubMedGoogle Scholar
  96. 96.
    Canne C, Lowe DJ, Fetzner S, Adams B, Smith AT, Kappl R, Bray RC, Hüttermann J. 1999. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications. Biochemistry 38(42):14077–14087.CrossRefPubMedGoogle Scholar
  97. 97.
    Coffman RE, Buettner GR. 1979. General magnetic dipolar interaction of spin–spin coupled molecular dimers: application to an EPR spectrum of xanthine oxidase. J Phys Chem 83(18):2392–2399.CrossRefGoogle Scholar
  98. 98.
    Iwasaki T, Okamoto K, Nishino T, Mizushima J, Hori H, Nishino T. 2000. Sequence motif-specific assignment of two 2Fe–2S clusters in rat xanthine oxidoreductase studied by site-directed mutagenesis. J Biochem 127(5):771–778.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of California RiversideRiversideUSA

Personalised recommendations